Что представляет собой скелетная мышца. Строение мышц человека

Мышечная система отвечает за движение человеческого тела. Прикреплено к костям около 700 мышц, которые составляют примерно половину массы тела человека. Каждая из этих мышц является дискретным органом, выполненным из ткани скелетных мышц, кровеносных сосудов, сухожилий и нервов. Мышечная ткань также находится внутри сердца, органов пищеварения и кровеносных сосудов. В этих органах она служит для транспортировки веществ … [Читайте ниже]

  • Голова и шея
  • Грудь и верх спины
  • Живот, поясница и таз
  • Ноги и стопы
  • Мышцы рук и кистей

[Начало сверху] …

Типы мышечных тканей

Есть три вида мышечной ткани: висцеральные, мышцы сердца и скелета.
Висцеральные — находятся внутри органов, таких как желудок, кишечник и кровеносные сосуды. Самые слабые из всех мышц внутренних органов, служат для перемещения веществ. Висцеральные мышцы не могут непосредственно контролироваться сознанием. Термин «гладкая» используется для висцеральной мышцы, так как она имеет гладкую структуру, однородный вид (если смотреть под микроскопом). Её внешний вид резко контрастирует с сердечной и скелетными мышцами.
Сердечная мышца расположена только в сердце, она отвечает за перекачивание крови по всему телу. Сердечная мышца не контролируется сознательно. В то время как гормоны и сигналы мозга могут регулировать скорость сжатия сердечной мышцы, стимулируя сокращение. Естественный стимулятор биения сердца — сердечная мышечная ткань, которая заставляет другие клетки сокращаться.
Клетки сердечной мышечной ткани являются поперечно — полосатыми, то есть, они представляют из себя светлые и темные полосы, если смотреть под световым микроскопом. Расположение белковых волокон внутри клеток вызывает эти светлые и темные полосы. Мышечная клетка очень сильна, в отличие от висцеральной.
Клетки сердечной мышцы являются разветвленными или X Y формы, клетки плотно соединены между собой специальными переходами, называемыми интеркалированными дисками. Интеркалированные диски состоят из пальцевидной проекции двух соседних ячеек, которые сцепляются и обеспечивают прочную связь между клетками. Разветвленная структура и интеркалированные диски позволяют мышечным клеткам противостоять высокому давлению крови и напряжению при перекачке крови в течение всей жизни. Эти функции также способствуют быстрому распространению электрохимических сигналов от клетки к клетке так, что сердце может биться как единое целое.

Скелетные мышцы являются единственной мышечной тканью в организме человека, которая управляется сознательно. Каждое физическое действие, которое человек сознательно выполняет (например: разговор, ходьба или письмо) требует движения скелетных мышц. Скелетные могут сжиматься, чтобы перемещать части тела ближе к кости, к которой мышца прикрепляется. Большинство скелетных мышц прикреплены к двум костям через суставы, так что они служат для перемещения частей этих костей ближе друг к другу.
Каркасные (скелетные) мышечные клетки образуются, когда множество мелких клеток — предшественников скомковываются вместе, чтобы сформировать длинные, прямые, многоядерные волокна. Исчерчены каркасные мышцы так же, как и сердечная, поэтому они очень сильны. Скелетная мышца получает свое название от того, что она всегда подключаются к скелету, по крайней мере, в одном месте.

Анатомия скелетных мышц

Большинство скелетных прикреплены к двум костям через сухожилия. Сухожилия — жесткие полосы плотной регулярной соединительной ткани; сильные коллагеновые волокна прочно прикрепляют мышцы к костям. Сухожилия находятся в крайнем напряжении, когда они тянутся, так что они очень сильно вплетены в покрытия мышц и костей.

Мышцы двигаются за счет сокращения их длины, натягивания сухожилий и перемещения костей ближе друг к другу. Одна из костей втягивается по направлению к другой кости, которая остается неподвижной. Место на движущейся кости, которая соединяется с мышцей через сухожилия называется вставкой. Мышцы живота находятся между сухожилиями, что позволяет делать фактическое сокращение.

Названия скелетных мышц

Их названия происходят на основе множества различных факторов, в том числе местонахождения, происхождения и вставки, количества, формы, размера, направления и функции.

Местоположение

Много мышц получают имена от анатомической области. Брюшная и прямая, поперечная брюшная, например, находятся в брюшной полости. Другие, как и передняя большеберцовая, названы из-за части кости (передняя часть голени), к которой они присоединены. Другие мышцы используют симбиоз двух видов названий, как плечелучевая, которая названа в честь области нахождения.

Происхождение

Некоторые мышцы названы на основе их подключения к стационарной и движущейся кости. Эти мышцы становится очень легко определить, когда вы знаете имена костей, к которым они присоединены.

Некоторые подключаются к более чем 1 кости или более чем в одном месте и имеют более чем один источник. Мышца сразу с двумя происхождения называется бицепсом, а с тремя происхождения — трицепсной. И, наконец, мышца с четырьмя происхождениями называется четырехглавой.

Форма, размер и направление

Также важно классифицировать мышцы по форме. Например, дельтовидные имеют дельта — или треугольную форму. Зубчатые имеют зубчатую или пилообразный форму. Ромбовидные — обладают формой ромба.
Размер может быть использован, чтобы различать два типа мышц, найденных в одном и том же регионе. Область ягодичной части содержит три мышцы, дифференцированные по размеру: ягодичная большая, ягодичная средняя и малая. И, наконец, направления мышечных волокон могут быть использованы для их идентификации. В брюшине существует несколько широких и плоских. Мышцы с волокнами, расположенными вверх и вниз — являются прямыми, работающие в поперечном направлении (слева направо) — поперечные, а работающие под углом, являются косыми.

Функции мышечной ткани человека

Мышцы иногда классифицируют по типу функции, которую они выполняют. Большинство мышц предплечья именуются в зависимости от их функций, потому что они расположены в том же регионе и имеют одинаковые формы и размеры. Например, сгибатели предплечья сгибают запястья и пальцы.
Супинатор — это мышца, которая поднимает запястье ладонью вверх. В ноге есть такие, которые называются аддукторами, чья роль заключается в стягивании ног.

Инициативные группы в скелетных мышцах

Чаще всего они работают в группах, чтобы произвести точные движения. Мышца, которая производит какое — либо конкретное движение тела известна как агонист или тягач. Агонисты всегда парны с антагонистами, которые производят противоположный эффект на одних и тех же костях. Например, двуглавая мышцы плеча сгибает руку в локте. В качестве антагониста для этого движения — трехглавая плеча — расширяет руку в локте. Когда трицепсы расширяют руку, бицепс будет считаться антагонистом.

В дополнение к агонист / антагонист классификации, другие мышцы работают, чтобы поддержать движение агониста.
Синергистами являются мышцы, которые помогают стабилизировать движение и уменьшить лишние движения. Они обычно находятся в областях вблизи агониста и часто подключаются к той же кости. Если вы поднимаете что-то тяжелое, они помогают держать тело в вертикальном положении неподвижно, так что вы поддерживаете свой баланс во время подъема.

Гистология скелетной мускулатуры

Скелетные мышечные волокна значительно отличаются от других тканей организма из — за их узкоспециализированных функций. Многие из органелл, которые составляют мышечные волокна являются уникальными для данного типа клетки.

Сарколемма является клеточной мембраной мышечных волокон. Сарколемма выступает в качестве проводника для электрохимических сигналов, которые стимулируют мышечные клетки. Подключенные к сарколемме поперечные трубочки (Т-трубочки) помогают переносить электрохимические сигналы в середину мышечного волокна. Саркоплазматический ретикулум служит в качестве хранилища для ионов кальция (Са2 +), которые имеют жизненно важное значение для сокращения мышц.
Митохондрии , движущая сила клетки, в изобилии находятся в мышечных клетках, чтобы обеспечивать энергией в виде АТФ активные мышцы. Большая часть структуры мышечного волокна выполнена из миофибрилл, которые являются сократительными структурами клетки. Миофибриллы составлены из многих белковых волокон, расположенных в повторяющихся субъединицах, называемых саркомерами. Саркомера является функциональной единицей мышечных волокон.

Структура саркомера

Саркомеры изготавливаются из двух типов белковых волокон: толстых нитей и тонких нитей.

Толстые нити состоят из множества соединенных звеньев белка миозина. Миозин является белком, который вызывает мышцы сокращаться.
Тонкие нити состоят из трех белков:

Актин.
Актин образует спиральную структуру, которая составляет большую часть массы тонкой нити.

Тропомиозин.
Тропомиозин — длинный волокнистый белок, который оборачивается вокруг актина и охватывает миозин, связывая с актином.

Тропонин.
Белок, связывающийся очень плотно с тропомиозином во время мышечного сокращения.

Функции мышечной ткани

Основной функцией мышечной системы является движение . Мышцы являются единственной тканью в организме, что имеет возможность перемещать другие части тела.
Связанная с функцией движения является вторая функция мускульной системы: поддержание позы и положения тела . Мышцы зачастую держат тело неподвижно или в определенном положении, а не вызывают движение. Мышцы, отвечающие за положение тела имеют наивысшую выносливость — они выполняют свои функции в течение всего дня, не становясь усталыми.
Еще одна функция, связанная с движением является движение веществ внутри тела . Сердечные и висцеральные мышцы, в первую очередь, ответственны за транспортировку веществ, таких как кровь или питательные вещества из одной части тела в другую.

Последняя функция мышечной ткани является генерация тепла . В результате высокой скорости метаболизма сокращающейся мышцы, наша мышечная система производит большое количество отработанного тепла. Многие небольшие сокращения мышц в организме производят наше естественное тепло тела. Когда мы прилагаем усилия больше, чем обычно, дополнительные сокращения мышц приводят к повышению температуры тела и в конечном итоге к потливости.

Скелетная мускулатура в роли рычага

Мышцы скелетной системы работают вместе с костями и суставами образуя рычажные системы. Они действуют как передатчики усилия, а кость выступает в качестве опоры; при движении мышцы и кости, объект перемещается.

Есть три класса рычагов, но подавляющее большинство рычагов в теле — рычаги третьего класса. Рычаг третьего класса представляет собой систему, в которой точка опоры находится на конце рычага. В организме, рычаги третьего класса, служат для увеличения расстояния для сокращения мышцы.

Двигательные единицы мышц

Нервные клетки, называемые моторными нейронами, управляют скелетными мышцами. Каждый двигательный нейрон контролирует несколько мышечных клеток в группе. Когда двигательный нейрон получает сигнал от мозга, он стимулирует все клетки мышц в то же время.
Размер двигательных единиц изменяется по всему телу, в зависимости от функции. Мышцы, которые выполняют тонкие движения — как мышцы глаз или пальцев, имеют очень много нейронов для повышения точности контроля мозга над этими структурами. Мышцы, которые требуют много сил, чтобы выполнять свои функции, как ноги или руки — имеют много мышечных клеток и меньше нейронов в каждом блоке.

Когда положительные ионы достигают саркоплазматического ретикулума, ионы Са2 + высвобождаются и протекают в миофибриллы. Ионы Са2 + связываются с тропонином, что вызывает молекулу тропонина изменять форму и переместить близлежащие молекулы тропомиозина. Тропомиозин отодвигается от миозина и связывается с молекулой актина, что позволяет актину и миозину связываться друг с другом.

Типы мышечных сокращений

Силой сжатия мышц можно управлять двумя факторами: количеством двигательных единиц (нейронов), участвующих в сокращении и количеством импульсов от нервной системы. Один нервный импульс моторного нейрона вызовет краткое напряжение группы мышц, а затем заставит расслабиться. Если двигательный нейрон обеспечивает несколько сигналов в течение короткого периода времени, то сила и продолжительность сжатия увеличивается. Если двигательный нейрон обеспечивает много нервных импульсов в быстрой последовательности, мышца может войти в состояние полного и прочного сокращения. Мышца останется в сжатом положении, пока скорость сигнала нерва не замедлится или до тех пор, пока мышца станет слишком усталой, чтобы поддерживать напряжение.

Не все сокращения мышц производят движение. Изометрическое сокращение — легкие схватки, которые увеличивают напряжение в мышцах, не оказывая достаточной силы, чтобы переместить часть тела. Когда тело напряжено из-за стресса, мышцы выполняют изометрическое сокращение. Поддержание позы является также результатом изометрических сокращений. Сужения мышц, что действительно производит движение является изотоническими сокращениями. Изотонические сокращения необходимы для наращивания мышечной массы за счет подъема веса.

Мышечный тонус является естественным состоянием, в котором скелетные мышцы остаются во всё время. Мышечный тонус обеспечивает легкое натяжение мышц, чтобы предотвратить повреждение мышц и суставов от резких движений, а также помогает поддерживать осанку тела. Все не повреждённые мышцы поддерживают некоторое количество мышечного тонуса во всё время.

Функциональные типы скелетных мышечных волокон

Cкелетные мышечные волокона, можно разделить на два типа в зависимости от того, как они производят и используют энергию:

I тип — волокна с очень медленным и осторожным сокращением. Они очень устойчивы к усталости, потому что используют аэробное дыхание для производства энергии из сахара. Находятся I типа волокона в мышцах по всему телу для выносливости и осанки, рядом с позвоночником и в регионах шеи.

Волокна типа II разбиты на две подгруппы: II типа А и типа II B.
Тип II волокна А быстрее и сильнее, чем I типа волокона, но не имеют столько же выносливости. Типа II A волокна находятся по всему телу, но особенно в ногах,где они работают, чтобы поддерживать ваше тело на протяжении долгого времени для ходьбы и стояния.

Тип II B — волокна еще быстрее и сильнее, чем II типа А, но еще меньше выносливые. Тип II B волокна немного светлее, чем тип I и тип II А из-за их отсутствия миоглобина — кислородного пигмента. Находятся волокна типа II B по всему телу, но особенно в верхней части, где они дают скорость и силу рукам и груди за счет выносливости.

Мышечный метаболизм и усталость

Мышцы получают энергию из различных источников, в зависимости от ситуации, в которой мышца работает. Мышцы способны использовать аэробное дыхание, когда необходимо произвести от низкого до умеренного уровня силы упражнения. Аэробное дыхание требует кислорода, чтобы произвести около 36-38 молекул АТФ из молекулы глюкозы. Аэробные дыхания является очень эффективным и может продолжаться до тех пор, пока мышца получает достаточное количество кислорода и глюкозы. Когда мы используем мышцы, чтобы произвести высокий уровень силы, они становятся настолько плотными, что находящийся кислород в крови не может войти в мышцу. Это условие приводит к тому, что мышцы используют для выработки энергии брожение молочной кислоты (форма анаэробного дыхания). Анаэробное дыхание менее эффективно аэробного дыхания — только 2 АТФ производится из каждой молекулы глюкозы.
Для того, чтобы мышцы работали в течение более длительного периода времени, мышечные волокна содержат несколько важных энергетических молекул. Миоглобин , красный пигмент содержащийся в мышцах, содержит железо и сохраняет кислород в манере, подобной гемоглобину крови. Кислород из миоглобина позволяет мышцам продолжать аэробное дыхание в отсутствии кислорода. Другой химикат, который помогает мышцам работать — креатинфосфат . Мышцы используют энергию в виде АТФ, происходит превращение АТФ в АДФ, чтобы выпустить свою энергию. Креатинфосфат жертвует свою фосфатную группу АДФ, чтобы включить её в АТФ, с тем, чтобы обеспечить дополнительную энергию для мышц. Наконец, мышечные волокна содержат энергию аккумулирующих гликогенов, больших макромолекул, изготовленных из множества связанной между собой глюкозы. Активные мышцы отщепляют глюкозу от молекул гликогена, чтобы обеспечить внутренний запас топлива.

Мышечная усталость

Когда мышцы исчерпали энергию во время аэробного или анаэробного дыхания, то быстро утомляются и теряют способность сокращаться. Это состояние известно как мышечная усталость . Утомление мышц не говорит о содержании очень малого количества или отсутствия кислорода, глюкозы или АТФ, но вместо этого имеет много продуктов — отходов дыхания, таких как молочная кислота и АДФ. Тело должно принимать дополнительное количество кислорода после физической нагрузки, чтобы заменить кислород, который находился в миоглобине мышечных волокон, а также для питания аэробного дыхания, которое обеспечивает поставки энергии внутри клетки. Восстановление потребления кислорода (кислородное голодание) — это восприятие дополнительного кислорода, который организм должен принять, чтобы восстановить мышечные клетки, их привести в состояние покоя. Это объясняет, почему появляется одышка в течение нескольких минут после напряженной деятельности — ваше тело пытается восстановить себя в нормальное состояние.

Строение мышцы:

А - внешний вид двуперистой мышцы; Б - схема продольного разреза многоперистой мышцы; В - поперечный разрез мышцы; Г - схема строения мышцы как органа; 1, 1" - сухожилие мышц; 2 - анатомический поперечник мышечного брюшка; 3 - ворота мышцы с сосудисто-нервным пучком (а - артерия, в - вена, п - нерв); 4 - физиологический поперечник (суммарный); 5 - подсухожильная бурса; 6-6" - кости; 7 - наружный перимизий; 8 - внутренний перимизий; 9 - эндомизий; 9"-мышечные волокна; 10, 10", 10" - чувствительные нервные волокна (несут импульс от мышцы, сухожилий, сосудов); 11, 11" - двигательные нервные волокна (несут импульс в мышцы, сосуды)

СТРОЕНИЕ СКЕЛЕТНОЙ МЫШЦЫ КАК ОРГАНА

Скелетные мышцы - musculus skeleti - являются активными органами аппарата движения. В зависимости от функциональных потребностей организма они могут изменять взаимоотношения между костными рычагами (динамическая функция) или укреплять их в определенном положении (статическая функция). Скелетные мышцы, выполняя сократительную функцию, значительную часть химической энергии, полученную с пищей, трансформируют в тепловую энергию (до 70%) и в меньшей степени в механическую работу (около 30%). Поэтому при сокращении мышца выполняет не только механическую работу, но и служит основным источником тепла в организме. Вместе с сердечно–сосудистой системой скелетные мышцы активно участвуют в обменных процессах и использовании энергетических ресурсов организма. Наличие в мышцах большого числа рецепторов способствует восприятию мышечно–суставного чувства, которое совместно с органами равновесия и органами зрения обеспечивает выполнение точных мышечных движений. Скелетные мышцы в совокупности с подкожной клетчаткой содержат до 58% воды, выполняя тем самым важную роль основных депо воды в организме.

Скелетная (соматическая) мускулатура представлена большим количеством мышц. Каждая мышца имеет опорную часть - соединительнотканную строму и рабочую часть - мышечную паренхиму. Чем большую статическую нагрузку выполняет мышца, тем больше развита в ней строма.

Снаружи мускул одет соединительнотканной оболочкой, которая называется наружным перимизием

Perimysium . На различных мышцах он разной толщины. От наружного перимизия внутрь отходят соединительнотканные перегородки - внутренний перимизий, окружающий мышечные пучки различной величины. Чем большую статическую функцию несет мышца, тем более мощные соединительнотканные перегородки в ней расположены, тем их больше. На внутренних перегородках в мышцах могут закрепляться мышечные волокна, проходят сосуды и нервы. Между мышечными волокнами проходят очень нежные и тонкие соединительнотканные прослойки, называемые эндомизием -endomysium .

В строме мышцы, представленной наружным и внутренним перимизием и эндомизием, упакована мышечная ткань (мышечные волокна, образующие мышечные пучки), формирующая различной формы и величины мышечное брюшко. Строма мышцы по концам мышечного брюшка образует сплошные сухожилия, форма которых зависит от формы мышц. Если сухожилие шнурообразно, оно называется просто сухожилием - tendo . Если сухожилие плоское, идет от плоского мускульного брюшка, то оно называется, апоневрозом –aponeurosis .

В сухожилии также различают наружные и внутренние оболочки (мезотендиний - mesotendineum ). Сухожилия очень плотны, компактны, образуют прочные шнуры, обладающие большой сопротивляемостью на разрыв. Коллагеновые волокна и пучки в них расположены строго продольно, благодаря чему сухожилия становятся менее утомляемой частью мышцы. Закрепляются сухожилия на костях, проникая волокнами в толщу костной ткани (связь с костью настолько крепка, что скорее разорвется сухожилие, чем оно оторвется от кости). Сухожилия могут переходить на поверхность мышцы и покрывать их на большем или меньшем расстоянии, образуя блестящую оболочку, которая называется сухожильным зеркалом.

В определенных участках в мышцу входят сосуды, ее кровоснабжающие, и нервы, ее иннервирующие. Место вступления их называется воротами органа. Внутри мышцы сосуды и нервы разветвляются по внутреннему перимизию и доходят до его рабочих единиц - мышечных волокон, на которых сосуды образуют сети капилляров, а нервы разветвляются на:

1) чувствительные волокна - идут от чувствительных нервных окончаний проприорецепторов, расположенных во всех участках мышц и сухожилий, и выносят импульс, направляющийся через клетку спинального ганглия в мозг;

2) двигательные нервные волокна, проводящие импульс от мозга:

а) к мышечным волокнам, заканчиваются на каждом мышечном волокне особой моторной бляшкой,

б) к сосудам мышц - симпатические волокна, несущие импульс от мозга через клетку симпатического ганглия к гладким мышцам сосудов,

в) трофические волокна, заканчивающиеся на соединительнотканной основе мышцы. Поскольку рабочей единицей мышц является мышечное волокно, то именно их количество определяет

силу мышцы; не от длины мышечных волокон, а от количества их в мышце зависит сила мышцы. Чем больше мышечных волокон в мышце, тем она сильнее. При сокращении мышца укорачивается на половину своей длины. Чтобы подсчитать количество мышечных волокон, делают разрез перпендикулярно их продольной оси; полученная площадь поперечно перерезанных волокон - это физиологический поперечник. Площадь разреза всей мышцы перпендикулярная ее продольной оси называется анатомическим поперечником. В одной и той же мышце может быть один анатомический и несколько физиологических поперечников, образовавшихся в том случае, если в мышце мышечные волокна короткие и имеют различное направление. Так как сила мышцы зависит от количества мышечных волокон в них, то она выражается отношением анатомического поперечника к физиологическому. В мышечном брюшке имеется всего один анатомический поперечник, а физиологических может быть различное количество (1:2, 1:3, ..., 1:10 и т. д.). Большое количество физиологических поперечников свидетельствует о силе мышцы.

Мышцы бывают светлые и темные. Цвет их зависит от функции, строения и кровенаполнения. Темные мышцы богаты миоглобином (миогематином) и саркоплазмой, они более выносливые. Светлые мышцы беднее этими элементами, они более сильные, но менее выносливые. У разных животных, в различном возрасте и даже в разных участках тела цвет мышц бывает различен: у лошадей мышцы темнее, чем у других видов животных; у молодняка светлее, чем у взрослых; на конечностях темнее, чем на теле.

КЛАССИФИКАЦИЯ МЫШЦ

Каждая мышца является самостоятельным органом и имеет определенную форму, величину, строение, функцию, происхождение и положение в организме. В зависимости от этого все скелетные мышцы подразделяются на группы.

Внутренняя структура мышцы.

Скелетные мышцы по взаимоотношениям мышечных пучков с внутримышечными соединительнотканными образованиями могут иметь самое различное строение, что, в свою очередь, обусловливает их функциональные различия. О силе мышц принято судить по количеству мышечных пучков, определяющих величину физиологического поперечника мышцы. Отношение физиологического поперечника к анатомическому, т.е. соотношение площади поперечного сечения мышечных пучков к наибольшей площади поперечного сечения мышечного брюшка, дает возможность судить о степени выраженности ее динамических и статических свойств. Различия в этих соотношениях позволяют подразделять скелетные мышцы на динамические, динамо– статические, статодинамические и статические.

Проще всего построены простые динамические мышцы . В них нежный перимизий, мышечные волокна длинные, идут вдоль продольной оси мышцы или под некоторым углом к ней, в связи с чем анатомический поперечник совпадает с физиологическим 1:1. Эти мышцы обычно связаны больше с динамической нагрузкой. Обладая большой амплитудой: они обеспечивают большой размах движения, но сила их небольшая – эти мышцы относятся к быстрым, ловким, но и быстро утомляющимся.

Статодинамические мышцы имеют более сильно развитый перимизий (и внутренний и наружный) и более короткие мышечные волокна, идущие в мышцах в различных направлениях, т. е. образующие уже

Классификация мышц: 1 – односуставные, 2 – двусуставные, 3 – многосуставные, 4 – мышцы–связки.

Типы строения статодинамических мышц: а – одноперистая, б – двуперистая, в – многоперистая, 1 – сухожилия мышц, 2 – пучки мышечных волокон, 3 – сухожильные прослойки, 4 – анатомический поперечник, 5 – физиологический поперечник.

множество физиологических поперечников. По отношению к одному общему анатомическому поперечнику в мышце может оказаться 2, 3, 10 физиологических поперечников (1:2, 1:3, 1:10), что дает основание говорить о том, что статодинамические мышцы сильнее динамических.

Статодинамические мышцы выполняют в большей мере статическую функцию во время опоры, удерживая разогнутыми суставы при стоянии животного, когда под действием массы тела суставы конечностей стремятся согнуться. Вся мышца может быть пронизана сухожильным тяжем, который дает возможность во время статической работы выполнять роль связки, снимая нагрузку с мышечных волокон и становясь мышечным фиксатором (двуглавая мышца у лошадей). Для этих мышц характерна большая сила и значительная выносливость.

Статические мышцы могут развиться в результате большой статической нагрузки, падающей на них. Мышцы, подвергшиеся глубокой перестройке и почти полностью утратившие мышечные волокна, фактически превращается в связки, которые способны выполнять лишь статическую функцию. Чем ниже на теле расположены мышцы, тем более они статичны по структуре. Они выполняют большую статическую работу при стоянии и опоре конечности о почву во время движения, закрепляя суставы в определенном положении.

Характеристика мышц по действию.

Согласно функции каждая мышца обязательно имеет два пункта закрепления на костных рычагах - головкой и сухожильным окончанием - хвостом, или апоневрозом. В работе один из этих пунктов будет неподвижной точкой опоры - punctum fixum , второй - подвижной -punctum mobile. У большинства мышц, особенно конечностей, эти пункты меняются в зависимости от выполняемой функции и местонахождения точки опоры. Мышца, закрепленная на двух пунктах (голове и плече), может двигать головой, когда неподвижная точка опоры ее на плече, и, наоборот, будет двигать плечом, если во время движенияpunctum fixum этой мышцы будет на голове.

Мышцы могут действовать только на один или два сустава, но чаще они являются многосуставными. Каждая ось движения на конечностях обязательно имеет две группы мышц с противоположным действием.

При движении по одной оси обязательно будут мышцы-сгибатели -флексоры и разгибатели -экстензоры , в некоторых суставах возможно приведение -аддукция , отведение -абдукция или вращение -ротация , причем вращение в медиальную сторону называетсяпронацией , а вращение наружу в латеральную сторону -супинацией .

Выделяются еще мышцы - напрягатели фасций - тензоры . Но при этом обязательно надо помнить, что в зависимости от характера нагрузки одна и та же

многосуставная мышца может работать как флексор одного сустава или как экстензор другого сустава. Примером может быть двуглавая мышца плеча, которая может оказывать действие на два сустава - плечевой и локтевой (закрепляется на лопатке, перебрасывается через вершину плечевого сустава, проходит внутри угла локтевого сустава и закрепляется на лучевой кости). При висячей конечности punctum fixum у двуглавой мышцы плеча будет в области лопатки, в этом случае мышца тянет вперед, лучевую кость и локтевой сустав сгибает. При опоре конечности о почвуpunctum fixum находится в области конечного сухожилия на лучевой кости; мышца работает уже как экстензор плечевого сустава (удерживает плечевой сустав в разогнутом состоянии).

Если мышцы оказывают противоположное действие на сустав, они называются антагонистами . Если их действие осуществляется в одном направлении, они называются «сотоварищами» -синергистами . Все мышцы, сгибающие один и тот же сустав, будут синергистами, экстензоры этого сустава по отношению к флексорам будут антагонистами.

Вокруг естественных отверстий расположены мышцы–запиратели -сфинктеры , для которых характерно круговое направление мышечных волокон;констрикторы , или суживатели, которые также

относятся к типу круглых мышц, но имеют иную форму; дилататоры , или расширители, при сокращении открывают естественные отверстия.

По анатомическому строению мышцы делятся в зависимости от количества внутримышечных сухожильных прослоек и направления мышечных прослоек:

одноперистые - для них характерно отсутствие сухожильных прослоек и мышечные волокна присоединяются к сухожилию одной стороны;

двуперистые - для них характерно наличие одной сухожильной прослойки и мышечные волокна присоединяются к сухожилию с двух сторон;

многоперистые - для них характерно наличие двух и более сухожильных прослоек, в результате этого мышечные пучки сложно переплетаются и к сухожилию подходят с нескольких сторон.

Классификация мышц по форме

Среди огромного многообразия мышц по форме можно выделить условно следующие основные типы: 1) Длинные мышцы соответствуют длинным рычагам движения и поэтому встречаются главным образом на конечностях. Имеют веретенообразную форму, средняя часть называется брюшком, конец, соответствующий началу мышцы, - головкой, противоположный конец - хвостом. Сухожилие длинных мышц имеет форму ленты. Некоторые длинные мышцы начинаются несколькими головками (многоглавые)

на различных костях, что усиливает их опору.

2) Короткие мышцы находятся на тех участках тела, где размах движений невелик (между отдельными позвонками, между позвонками и ребрами и т.д.).

3) Плоские (широкие) мышцы располагаются преимущественно на туловище и поясах конечностей. Они имеют расширенное сухожилие, называемое апоневрозом. Плоские мышцы обладают не только двигательной функцией, но также опорной и защитной.

4) Встречаются также и другие формы мышц: квадратная ,круговая ,дельтовидная ,зубчатая ,трапециевидная ,веретеновидная и др.

ВСПОМОГАТЕЛЬНЫЕ ОРГАНЫ МЫШЦ

При работе мышц часто создаются условия, снижающие эффективность их работы, особенно на конечностях, когда направление мышечной силы при сокращении происходит параллельно направлению плеча рычага. (Самое выгодное действие мышечной силы тогда, когда она направлена под прямым углом к плечу рычага.) Однако недостаток этого параллелизма в работе мышц устраняется рядом дополнительных приспособлений. Так, например, в местах приложения силы кости имеют бугры, гребни. Под сухожилия подкладываются специальные косточки (или вправляются между сухожилиями). В местах сочленения кости утолщаются, отделяя мышцу от центра движения в суставе. Одновременно с эволюцией мышечной системы тела развиваются как неотъемлемая ее часть вспомогательные приспособления, улучшающие условия работы мышц и помогающие им. К ним относятся фасции, бурсы, синовиальные влагалища, сесамовидные косточки, специальные блоки.

Вспомогательные органы мышц:

А - фасции в области дистальной трети голени лошади (на поперечном разрезе), Б - удерживатели и синовиальные влагалища сухожилий мышц в области заплюсневого сустава лошади с медиальной поверхности, В - фиброзное и синовиальное влагалища на продольном и В" - поперечном срезах;

I - кожа, 2 - подкожная клетчатка, 3 - поверхностная фасция, 4 - глубокая фасция, 5 собственная фасция мышц, 6 - собственная фасция сухожилия (фиброзное влагалище), 7 - соединения поверхностной фасции с кожей, 8 - межфасциалъные соединения, 8 - сосудисто-нервный пучок, 9 - мышцы, 10 - кость, 11 - синовиальные влагалища, 12 - удерживатели разгибателей, 13 - удерживатели сгибателей, 14 - сухожилие;

а - париетальный и b - висцеральный листки синовиального влагалища, с - брыжейка сухожилия, d - места перехода париетального листка синовиального влагалища в его висцеральный листок, е - полость синовиального влагалища

Фасции.

Каждая мышца, группа мышц и вся мускулатура тела одеты специальными плотными фиброзными оболочками, называемыми фасциями - fasciae . Они плотно притягивают мышцы к скелету, фиксируют их положение, способствуя уточнению направления силы действия мышц и их сухожилий, поэтому хирурги называют их футлярами мышц. Фасции отграничивают мышцы друг от друга, создают опору для мышечного брюшка при его сокращении и устраняют трение мышц друг от друга. Фасции еще называют мягким скелетом (считают остатком перепончатого скелета предков - позвоночных). Они помогают и в опорной функции костного скелета - натяжение фасций при опоре снижает нагрузку на мышцы, смягчает ударную нагрузку. В этом случае фасции берут на себя амортизационную функцию. Они богаты рецепторами и сосудами, в связи с чем вместе с мышцами обеспечивают мышечно–суставное чувство. Весьма существенную роль играют в регенерационных процессах. Так, если при удалении пораженного хрящевого мениска в коленном суставе на его место вживить лоскут фасции, не потерявшей связь с основным ее пластом (сосудами и нервами), то при определенной тренировке через некоторое время на ее месте дифференцируется орган с выполнением функции мениска, работа сустава и конечности в целом восстанавливается. Таким образом, изменяя локальные условия биомеханической нагрузки на фасции, можно их использовать как источник ускоренной регенерации структур опорно–двигательного аппарата при аутопластике хрящевой и костной тканей в восстановительной и реконструктивной хирургии.

С возрастом фасциальные футляры утолщаются, делаются более прочными.

Под кожей туловище покрыто поверхностной фасцией и связано с ней рыхлой соединительной тканью. Поверхностная, или подкожная, фасция - fascia superficialis, s. subcutanea - отделяет кожу от поверхностных мышц. На конечностях она может иметь прикрепления на коже и костных выступах, что способствует через посредство сокращений подкожных мышц осуществлению сотрясений кожного покрова, как это имеет место у лошадей, когда они освобождаются от назойливых насекомых или при стряхивании приставшего к коже мусора.

На голове под кожей расположена поверхностная фасция головы – f. superficialis capitis , в которой заключены мышцы головы.

Шейная фасция – f. cervicalis лежит вентрально в области шеи и прикрывает трахею. Различают фасцию шеи и грудобрюшную фасцию. Каждая из них соединяется друг с другом дорсально вдоль надостистой и выйной связок и вентрально - по срединной линии живота - белой линии -linea alba.

Шейная фасция лежит вентрально, прикрывая трахею. Ее поверхностный лист закрепляется на каменистой части височной кости, подъязычной кости и крае крыла атланта. Она переходит в фасции глотки, гортани и околоушную. Затем идет вдоль длиннейшей мышцы головы, дает межмышечные перегородки в этой области и достигает лестничной мышцы, сливаясь с ее перимизием. Глубокая пластина этой фасции отделяет вентральные мышцы шеи от пищевода и трахеи, закрепляется на межпоперечных мышцах, впереди переходит на фасции головы, а каудально достигает первого ребра и грудины, следуя дальше как внутригрудная фасция.

С шейной фасцией связана шейная подкожная мышца - m. cutaneus colli . Она идет вдоль шеи, ближе к

ее вентральной поверхности и переходит на лицевую поверхность к мышцам рта и нижней губы. Грудопоясничная фасция – f. thoracolubalis лежит дорсально на туловище и закрепляется на остистых

отростках грудных и поясничных позвонков и маклоке. Фасция образует поверхностную и глубокую пластину. Поверхностная закрепляется на маклоке и остистых отростках позвонков поясничного и грудного отделов. В области холки она закрепляется на остистых и поперечных отростках и называется поперечно–остистой фасцией. На ней закрепляются мышцы, идущие на шею и к голове. Глубокая пластина расположена только на пояснице, закрепляется на поперечно–реберных отростках и дает начало некоторым брюшным мышцам.

Грудобрюшная фасция – f. thoracoabdominalis лежит латерально по бокам от грудной и брюшной полости и закрепляется вентрально по белой линии живота –linea alba .

С грудобрюшной поверхностной фасцией связана грудобрюшная, или кожная, мышца туловища - m. cutaneus trunci - довольно обширная по площади с продольно идущими волокнами. Расположена она по бокам от грудной и брюшной стенок. Каудально отдает пучки в коленную складку.

Поверхностная фасция грудной конечности – f. superficialis membri thoracici является продолжением грудобрюшной фасции. Она значительно утолщена в области запястья и формирует фиброзные влагалища для сухожилий мышц, которые здесь проходят.

Поверхностная фасция тазовой конечности – f. superficialis membri pelvini является продолжением грудопоясничной и значительно утолщена в области заплюсны.

Под поверхностной фасцией расположена глубокая, или собственно фасция – fascia profunda . Она окружает конкретные группы мышц–синергистов или отдельные мышцы и, прикрепляя их в определенном положении на костной основе, обеспечивает им оптимальные условия для самостоятельных сокращений и предотвращает их боковые смещения. В отдельных участках тела, где требуется более дифференцированное движение, от глубокой фасции отходят межмышечные связи и межмышечные перегородки, образующие обособленные фасциальные футляры для отдельных мышц, которые часто относят к собственным фасциям(fascia propria). Там, где требуется групповое усилие мышц, межмышечные перегородки отсутствуют и глубокая фасция, приобретая особенно мощное развитие, имеет четко выраженные тяжи. За счет местных утолщений глубокой фасции в области суставов образуются поперечные, или кольцевидной формы, перемычки: сухожильные дуги, удерживатели сухожилий мышц.

В области головы поверхностная фасция делится на следующие глубокие: Лобная фасция идет со лба на спинку носа; височная - по височной мышце; околоушно-жевательная покрывает околоушную слюнную железу и жевательную мышцу; щечная идет в области боковой стенки носа и щеки и подчелюстная - с вентральной стороны между телами нижней челюсти. Щечно-глоточная фасция идет с каудальной части щечной мышцы.

Внутригрудная фасция – f. endothoracica выстилает внутреннюю поверхность грудной полости. Поперечно–брюшная фасция – f. transversalis выстилает внутреннюю поверхность брюшной полости.Тазовая фасция – f. pelvis выстилает внутреннюю поверхность тазовой полости.

В области грудной конечности поверхностная фасция делится на следующие глубокие: фасции лопатки, плеча, предплечья, кисти, пальцев.

В области тазовой конечности поверхностная фасция делится на следующие глубокие: ягодичную (покрывает область крупа), фасции бедра, голени, стопы, пальцев

Во время движения фасции играют важную роль в качестве приспособления для присасывания крови и лимфы из нижележащих органов. С мышечных брюшков фасции переходят на сухожилия, окружают их и закрепляются на костях, удерживая сухожилия в определенном положении. Такой фиброзный футляр в виде трубки, через которую проходят сухожилия, называется фиброзным влагалищем сухожилия - vagina fibrosa tendinis . Фасция в определенных местах может утолщаться, образуя лентообразные кольца вокруг сустава, притягивающие группу сухожилий, перебрасывающихся через него. Их еще называют кольцевыми связками. Эти связки особенно хорошо выражены в области запястья и заплюсны. В отдельных местах фасция является местом закрепления мышцы, которая ее напрягает,

В местах большого напряжения, особенно при статической работе, фасции утолщаются, волокна их приобретают различное направление, не только способствуя укреплению конечности, но и выполняя роль пружинящего, амортизационного приспособления.

Бурсы и синовиальные влагалища.

Для того чтобы предотвратить трение мышц, сухожилий или связок, смягчить их соприкосновение с другими органами (костью, кожей и т. д.), облегчить скольжение при больших размахах движения, между листами фасций образуются щели, выстланные оболочкой, выделяющей в образовавшуюся полость слизь или синовию, в зависимости от чего различают синовиальные и слизистые бурсы. Слизистые бурсы – bursa mucosa – (изолированные «мешочки»), образованные в уязвимых местах под связками, называются подсвязочными, под мышцами - подмышечными, под сухожилиями - подсухожильными, под кожей - подкожными. Полость их заполнена слизью и они могут быть постоянными или временными (мозоли).

Бурса, которая образуется за счет стенки капсулы сустава, благодаря чему ее полость сообщается с полостью сустава, называется синовиальной бурсой - bursa synovialis . Такие бурсы заполнены синовией и расположены главным образом в областях локтевого и коленного суставов, и их поражение угрожает суставу – воспаление этих бурс вследствие травмы может привести к артриту, поэтому в дифференциальной диагностике знание расположения и строении синовиальных бурс необходимо, оно определяет лечение и прогноз болезни.

Несколько сложнее построены синовиальные влагалища сухожилий –vagina synovialis tendinis , в которых проходят длинные сухожилия, перебрасываясь через запястный, заплюсневый и путовый суставы. Синовиальное влагалище сухожилий отличается от синовиальной сумки тем, что имеет гораздо большие размеры (длину, ширину) и двойную стенку. Оно полностью охватывает движущееся в нем сухожилие мышцы, вследствие этого синовиальное влагалище не только выполняет функцию бурсы, но и укрепляет положение сухожилия мышцы на значительном ее протяжении.

Подкожные бурсы лошади:

1 - подкожная затылочная бурса, 2 - подкожная париетальная бурса; 3 - подкожная скуловая бурса, 4 - подкожная бурса угла нижней челюсти; 5 - подкожная предгрудинная бурса; 6 - подкожная локтевая бурса; 7 - подкожная латеральная бурса локтевого сустава, 8 - подсвязочная бурса локтевого разгибателя запястья; 9 - подкожная бурса абдуктора первого пальца, 10 - медиальная подкожная бурса запястья; 11 - подкожная предкарпальная бурса; 12 - латеральная подкожная бурса; 13 - пальмарная (статарная) подкожная пальцевая бурса; 14 - подкожная бурса четвертой пястной кости; 15, 15" - медиальная и латеральная подкожные бурсы лодыжки; /6 - подкожная пяточная бурса; 17 - подкожная бурса большеберцовой шероховатости; 18, 18" - подфасциальная подкожная предколенная бурса; 19 - подкожная седалищная бурса; 20 - подкожная вертлужная бурса; 21 - подкожная бурса крестца; 22, 22" - подфасциальная подкожная бурса маклока; 23, 23" - подкожная подсвязочная бурса надостистой связки; 24 - подкожная предлопаточная бурса; 25, 25" - подсвязочные каудальная и краниальная бурсы выйной связки

Синовиальные влагалища образуются внутри фиброзных влагалищ, закрепляющих длинные сухожилия мышц при их прохождении через суставы. Внутри стенка фиброзного влагалища выстилается синовиальной оболочкой, образуя париетальный (наружный) лист этой оболочки. Сухожилие, проходящее через этот участок, тоже покрыто синовиальной оболочкой, еевисцеральным (внутренним) листом . Скольжение во время движения сухожилия происходит между двумя листками синовиальной оболочки и синовии, находящейся между этими листками. Два листка синовиальной оболочки связаны между собой тонкой двухслойной и короткой брыжейкой - переходом париентального листа в висцеральный. Синовиальное влагалище, таким образом, представляет собой тончайшую двухслойную замкнутую трубочку, между стенками которой находится синовиальная жидкость, способствующая скольжению в ней длинного сухожилия. При травмах в области суставов, где имеются синовиальные влагалища, приходится дифференцировать источники выделяющейся синовии, выясняя, вытекает она из сустава или синовиального влагалища.

Блоки и сесамовидные кости.

Способствуют улучшению условии работы мышц блоки и сесамовидные косточки. Блоки – trochlea – это определенной формы участки эпифизов трубчатых костей, через которые перекидываются мышцы. Они представляет собой костный выступ и желобок в нем, где проходит сухожилие мышц, благодаря чему сухожилия не смещаются в сторону и увеличивается рычаг приложения силы. Блоки образуются там, где требуется изменение направления действия мышцы. Они покрыты гиалиновым хрящом, улучшающим скольжение мышцы, здесь же нередко имеются синовиальные сумки или синовиальные влагалища. Блоки имеют плечевая и бедренная кости.

Сезамовидные кости – ossa sesamoidea – представляют собой костные образования, которые могут образовываться как внутри сухожилий мышц, так и в стенке капсулы сустава. Они формируются в области очень сильного напряжения мышц и обнаруживаются в толще сухожилий. Располагаются сесамовидные кости или на вершине сустава, или на выступающих краях сочленяющихся костей, или там, где требуется создать подобие мышечного блока, чтобы изменить направление усилий мышцы при ее сокращении. Они изменяют угол прикрепления мышц и тем самым улучшают условия их работы, уменьшая трение. Иногда их называют «окостеневшими участками сухожилий», но необходимо помнить, что они проходят только две стадии развития (соединительнотканную и костную).

Самая крупная сесамовидная кость - коленная чашечка - patella вправлена в сухожилия четырехглавой мышцы бедра и скользит по надмыщелкам бедренной кости. Более мелкие сесамовидные косточки расположены под сухожилиями пальцевых сгибателей с пальмарной и плантарной сторон путового (по две на каждый) сустава. Со стороны сустава эти косточки покрыты гиалиновым хрящом.

Существуют три разновидности мышечной ткани. Гладкая мускулатура образует стенки кровеносных сосудов, желудка, кишечника, мочевыводящих путей. Поперечно-полосатая сердечная мышца составляет большую часть мышечного слоя сердца. Третий вид – скелетная мускулатура. Название этих мышц связано с тем, что они соединены с костями. Скелетные мышцы и кости представляют собой единую систему, обеспечивающую движения.

Скелетная мышца состоит из особых клеток – миоцитов. Это весьма крупные клетки: их диаметр составляет от 50 до 100 мкм, а длина достигает нескольких сантиметров. Другая особенность миоцитов – наличие множества ядер, количество которых достигает сотни.

Главная функция скелетной мышцы – сокращение. Оно обеспечивается особыми органеллами – миофибриллами. Они располагаются рядом с митохондриями, ведь сокращение требует большого количества энергии.

Миоциты объединяются в комплекс – миосимпласт, окруженный одноядерными клетками – миосателлитами. Они представляют собой стволовые клетки и начинают активно делиться в случае повреждения мышцы. Миосимпласт и миосателлиты образуют – структурную единицу мышцы.

Мышечные волокна соединены между собой рыхлой соединительной тканью в пучки первого ряда, из которых состоят пучки второго ряда и т.д. Пучки всех рядов покрыты общей оболочкой. Соединительнотканные прослойки достигают концов мышцы, где переходят в сухожилие, прикрепляющееся к кости.

Для сокращений, осуществляемых скелетными мышцами, необходимо большое количество питательных веществ и кислорода, поэтому мышцы в изобилии снабжены кровеносными сосудами. И все же кровь не всегда способна обеспечивать мышцы кислородом: при сокращении мышц сосуды перекрываются, приток крови прекращается, поэтому в клетках мышечной ткани присутствует белок, способный связывать кислород – миоглобин.

Сокращение мышц регулируется соматическим отделом нервной системы. К каждой мышце подходит периферический нерв, состоящий из аксонов нейронов, расположенных в спинном мозге. В толще мышцы нерв разветвляется на отростки-аксоны, каждый из которых достигает отдельного мышечного волокна.

Импульсы из центральной нервной системы, передаваемые по периферическим нервам, регулируют тонус мышц – их постоянное напряжение, благодаря которому тело сохраняет определенное положение, а также сокращения мышц, связанное с непроизвольными и произвольными двигательными актами.

При сокращении мышца укорачивается, ее концы сближаются. Мышца при этом тянет за собой кость, к которой прикреплена с помощью сухожилия, и кость изменяет свое положение. Каждой скелетной мышце соответствует мышца- , которая расслабляется при ее сокращении, а затем сокращается, чтобы вернут кость в прежнее положение. Например, например, антагонист бицепса – двуглавой мышцы плеча – это трицепс, трехглавая мышца. Первая из них выступает как сгибатель локтевого сустава, а вторая – как разгибатель. Впрочем, разделение условно, некоторые двигательные акты требуют одновременного сокращения мышц-антагонистов.

У человека более 200 скелетных мышц, отличающихся друг от друга по размеру, форме, способу прикрепления к кости. Они не остаются неизменными в течение жизни – в них возрастает количество либо мышечной, либо соединительной ткани. Увеличению количества мышечной ткани способствует двигательная активность.

КЛАССИФИКАЦИЯ МЫШЕЧНЫХ ВОЛОКОН.

Морфологическая классификация

Поперечно-полосатая (поперечно-исчерченная)

Гладкая (неисчерченная)

Классификация по типу контроля мышечной актичности

Поперечно-полосатая мышечная ткань скелетного типа.

Гладкая мышечная ткань внутренних органов.

Поперечно-полосатая мышечная ткань сердечного типа

КЛАССИФИКАЦИЯ СКЕЛЕТНЫХ МЫШЕЧНЫХ ВОЛОКОН

ПОПЕРЕЧНО-ПОЛОСАТЫЕ МЫШЦЫ представляют собой максимально специализированый аппарат для осуществления быстрого сокращения. Поперечно-полосатые мышцы бывают двух типов - скелетные и сердечные. СКЕЛЕТНЫЕ мышцы состоят из мышечных волокон, каждое из которых представляет собой многоядерную клетку, полученную в результате слияния большого количества клеток. В зависимости от сократительных свойств, окраски и утомляемости мышечные волокна подразделяют на две группы - КРАСНЫЕ И БЕЛЫЕ. Функциональной единицей мышечного волокна является миофибрилла. Миофибриллы занимают практически всю цитоплазму мышечного волокна, оттесняя ядра на периферию.

КРАСНЫЕ МЫШЕЧНЫЕ волокна (волокна 1 типа) содержат большое количество митохондрий с высокой активностью окислительных ферментов. Сила их сокращений сравнительно невелика, а скорость потребления энергии такова, что им вполне хватает аэробного метаболизма (используют кислород). Они участвуют в движениях, не требующих значительных усилий, - например, в поддержании позы.

БЕЛЫМ МЫШЕЧНЫМ ВОЛОКНАМ (волокнам 2 типа) присуща высокая активность ферментов гликолиза, значительная сила сокращения и такая высокая скорость потребления энергии, для которой уже не хватает аэробного метаболизма. Поэтому двигательные единицы, состоящие из белых волокон, обеспечивают быстрые, но кратковременные движения, требующие рывковых усилий.

КЛАССИФИКАЦИЯ ГЛАДКИХ МЫШЦ

Гладкие мышцы подразделяются на ВИСЦЕРАЛЬНЫЕ (УНИТАРНЫЕ) И МУЛЬТИУНИТАРНЫЕ . ВИСЦЕРАЛЬНЫЕ ГЛАДКИЕ мышцы находятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже. К МУЛЫПИУНИТАРНЫМ относятся ресничная мышца и мышца радужки глаза. Деление гладких мышц на висцеральные и мультиунитарные основано на различной плотности их двигательной иннервации. В ВИСЦЕРАЛЬНЫХ ГЛАДКИХ мышцах двигательные нервные окончания имеются на небольшом количестве гладких мышечных клеток.

ФУНКЦИИ СКЕЛЕТНЫХ И ГЛАДКИХ МЫШЦ.

ФУНКЦИИ И СВОЙСТВА ГЛАДКИХ МЫШЦ

1. ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ . Гладкие мышцы характеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состоянии постоянного частичного сокращения - тонуса. Мембранный потенциал гладкомышечных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокращается, при увеличении - расслабляется.



2. АВТОМАТИЯ . ПД гладких мышечных клеток имеют авторитмический характер, подобно потенциалам проводящей системы сердца. Это свидетельствует о том, что любые клетки гладких мышц способны к самопроизвольной автоматической активности. Автоматия гладких мышц, т.е. способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.

3. РЕАКЦИЯ НА РАСТЯЖЕНИЕ . В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге - тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления.

4. ПЛАСТИЧНОСТ Ь. Изменчивость напряжения без закономерной связи с ее длиной. Так, если растянуть гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным растяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня.

5. ХИМИЧЕСКАЯ ЧУВСТВИТЕЛЬНОСТЬ . Гладкие мышцы обладают высокой чувствительностью к различным физиологически активным веществам: адреналину, норадреналину. Это обусловлено наличием специфических рецепторов мембраны гладкомышечных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенциал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдается тот же эффект, что и при возбуждении симпатических нервов.

ФУНКЦИИ И СВОЙСТВА СКЕЛЕТНЫХ МЫШЦ

Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции :

1)обеспечивают определенную позу тела человека;

2)перемещают тело в пространстве;

3) перемещают отдельные части тела относительно друг друга;

4) являются источником тепла, выполняя терморегуляционную функцию.

Скелетная мышца обладает следующими важнейшими СВОЙСТВАМИ :

1)ВОЗБУДИМОСТЬЮ - способностью отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала.

2) ПРОВОДИМОСТЬЮ - способностью проводить потенциал действия вдоль и в глубь мышечного волокна по Т-системе;

3) СОКРАТИМОСТЬЮ - способностью укорачиваться или развивать напряжение при возбуждении;

4) ЭЛАСТИЧНОСТЬЮ - способностью развивать напряжение при растягивании.