Программа «Спейс Шаттл»: что получилось, а что нет. Космический корабль «Шаттл

В любом онлайн-обсуждении компании SpaceX обязательно появляется человек, который заявляет, что -де на примере Шаттла все уже с этой вашей многоразовостью понятно. И вот, после недавней волны обсуждений успешной посадки первой ступени Фалькона на баржу, я решил написать пост с кратким описанием надежд и чаяний американской пилотируемой космонавтики 60-х, как эти мечты потом разбились о суровую реальность, и почему из-за всего этого Шаттл не имел никаких шансов стать экономически эффективным. Картинка для привлечения внимания: последний полет Шаттла "Индевор":


Планов громадье

В первой половине шестидесятых, после обещания Кеннеди высадиться на Луну до конца десятилетия, на НАСА полился денежный дождь бюджетных средств. Это, конечно же, вызвало там определенное головокружение от успехов. Не считая текущей работы над Аполлоном и над "практическим применением программы Аполлон" (Apollo Applications Program), работа шла над следующими перспективными проектами:

- Космические станции. По планам их должно было быть три: одна на низкой опорной орбите у Земли (НОО), одна на геостационаре, одна на лунной орбите. Экипаж каждой составлял бы двенадцать человек (в дальнейшем предполагалось строительство еще бОльших станций, с экипажем в пятьдесят-сто человек), диаметр основного модуля был девять метров. Каждому члену экипажа выделялась отдельная комната с кроватью, столом, стулом, телевизором, и кучей шкафов для личных вещей. Предусматривалось две ванных комнаты (плюс у командира в каюте был личный туалет), кухня с духовкой, посудомойкой и обеденными столами со стульями, отдельная зона отдыха с настольными играми, медпункт с операционным столом. Предполагалось что выведет центральный модуль оной станции сверхтяжелый носитель Сатурн-5, а для снабжения её необходимо будет десять полетов гипотетического тяжелого носителя ежегодно. Не будет преувеличением сказать, что по сравнению с этими станциями нынешняя МКС смотрится конурой.

Лунная база . Вот пример проекта НАСА конца шестидесятых. Насколько я понимаю, предполагалась унифицация с модулями космической станции.

Ядерный челнок . Корабль предназначенный для перемещения грузов с НОО на геостационар или на лунную орбиту, с ядерными ракетным двигателем (ЯРД). В качестве рабочего тела использовался бы водород. Также челнок мог служить разгонным блоком марсианского корабля. Проект, кстати, был весьма интересный и был бы полезен и в сегодняшних условиях, да и с ядерным двигателем в результате продвинулись довольно далеко. Жаль что ничего не вышло. можно про него почитать подробнее.

Космический буксир . Предназначался для перемещения груза с космического челнока на ядерный челнок, или с ядерного челнока на требуемую орбиту или на лунную поверхность. Предлагалась большая степень унификации при выполнении различных задач.

Космический челнок . Многоразовый корабль предназначенный для поднятия грузов с поверхности Земли на НОО. На иллюстрации космический буксир перевозит груз с него на ядерный челнок. Собственно это и есть то, что мутировало со временем в Спейс Шаттл.

Марсианский космический корабль . Показан тут с двумя ядерными челноками, выполняющими функцию разгонных блоков. Предназначался для полета к Марсу в начале восьмидесятых годов, с двухмесячным пребыванием экспедиции на поверхности.

Если кому интересно, и подробнее написано про все это, с иллюстрациями (англ.)

Космический челнок

Как видим выше, космический челнок был всего лишь одной из частей задуманной циклопической космической инфраструктуры. В комплексе с базирующимися в космосе ядерным челноком и буксиром он должен был обеспечить доставку грузов с земной поверхности в любую точку пространства вплоть до лунной орбиты.

До этого все ракеты космического назначения (РКН) были одноразовыми. Космические аппараты также были одноразового применения, за редчайшим исключением в области пилотируемых кораблей -- дважды слетали "Меркурии" с заводскими номерами 2, 8, 14 и также второй "Джемини". В силу гигантских планируемых объемов вывода полезной нагрузки (ПН) на орбиту, руководством НАСА была сформулирована задача: создать систему многоразового применения, когда и ракета-носитель, и космический корабль возвращаются после полета и используются многократно. Такая система стоила бы гораздо больше в разработке нежели обычные РКН, но в счет меньших расходов при эксплуатации быстро окупилась бы при уровне планируемого грузопотока.

Умами большинства овладела идея создания многоразового ракетоплана -- в середине шестидесятых было немало причин думать, что создание такой системы это не слишком сложная задача. Пусть проект космического ракетоплана Dyna-Soar и был отменен МакНамарой в 1963 году, но случилось это не из-за того, что программа была технически невозможной, а просто потому что для КК не было задач -- "Меркурии" и создаваемые тогда "Джемини" справлялись с доставкой астронавтов на околоземную орбиту, а выводить значительную ПН или долго находиться на орбите X-20 не мог. А вот экспериментальный ракетоплан X-15 отлично показал себя во время эксплуатации. В ходе 199 полетов на нем был отработан выход за линию Кармана (т.е. за условную границу космоса), гиперзвуковой вход назад в атмосферу и управление в условиях вакуума и невесомости.

Естественно, для предполагаемого космического челнока понадобился бы куда более мощный многоразовый двигатель и более совершенная теплозащита, но проблемы эти не видились непреодолимыми. Жидкостный ракетный двигатель (ЖРД) RL-10 показал к тому времени отличную многоразовость на стенде: в одном из испытаний оный ЖРД был успешно запущен более пятидесяти раз подряд, и проработал в общей сложности два с половиной часа. Предполагаемый ЖРД Шаттла, Space Shuttle Main Engine (SSME) так же как и RL-10 предполагалось создать на топливной паре кислород-водород, но повысить при том его эффективность, увеличив давление в камере сгорания и введя схему закрытого цикла с дожиганием топливного генераторного газа.

С теплозащитой также не ожидалось особых проблем. Во-первых велась уже работа над новым типом теплозащиты на основе волокон двуокиси кремния (именно из нее состояли плитки созданных потом Шаттла и Бурана). В качестве запасного варианта оставались абляционные панели, которые можно было за сравнительно небольшие деньги менять после каждого полета. А во-вторых для уменьшения тепловой нагрузки предполагалось сделать вход аппарата в атмосферу по принципу "тупого тела" (blunt body) -- т.е. с помощью формы летательного аппарата создавать перед тем фронт ударной волны, которая охватывала бы большую область нагретого газа. Таким образом кинетическая энергия корабля интенсивно нагревает окружающий воздух, уменьшая нагрев летательного аппарата.

Во второй половине шестидесятых несколько аэрокосмических корпораций представили свое видение будущего ракетоплана.

Стар Клиппер Локхида был космопланом с несущим корпусом -- благо к тому времени летательные аппараты (ЛА) с несущим корпусом были неплохо уже отработаны: ASSET, HL-10, PRIME, M2-F1/M2-F2, X-24A/X-24B (к слову, создающийся сейчас Дримчейсер это тоже космоплан с несущим корпусом). Правда Стар Клиппер не был полностью многоразовым, топливные баки диаметром в четыре метра по краям ЛА сбрасывались во время взлета.

Проект МакДоннелл Дуглас также имел сбрасываемые баки, и неcущий корпус. Изюминкой проекта были выдвигаемые из корпуса крылья, которые должны были улучшить взлетно-посадочные характеристики космоплана:

Дженерал Дайнэмикс выдвинул концепцию "триамского близнеца". Аппарат в середине был космопланом, два аппарата по бокам служили первой ступенью. Планировалось, что унификация первой ступени и корабля поможет сэкономить средства в ходе разработки.

Сам ракетоплан должен был быть многоразовым, а вот насчет бустера уверенности не было довольно долго. В рамках этого рассматривалось немало концептов, часть из них которых балансировала на грани благородного безумия. Как вам например вот этот концепт многоразовой первой ступени, с массой на старте в 24 тысячи тонн (слева МБР Атлас, для масштаба). Посла пуска ступень должна была плюхаться в океан и буксироваться в порт.

Впрочем наиболее серьезно рассматривались три возможных варианта: дешевая одноразовая ракетная ступень (т.е. Сатурн-1), многоразовая первая ступень с ЖРД, многоразовая первая ступень с гиперзвуковым прямоточным двигателем. Иллюстрация 1966 года:

Примерно в то же время были начаты исследования в техническом директорате Manned Spacecraft Center под руководством Макса Фаже. У него, на мой личный взгляд, был самый элегантный проект созданный в рамках разработки Спейс Шаттла. И носитель и корабль космического челнока задумывались крылатыми и пилотируемыми. Стоит отметить что Фаже отказался от несущего корпуса, рассудив что тот значительно усложнит процесс разработки -- изменения в компоновке челнока могли сильно влиять на его аэродинамику. Самолет-носитель стартовал вертикально, работал как первая ступень системы и после отделения корабля садился на аэродром. При сходе с орбиты космоплан должен был тормозить так же как и X-15, входом в атмосферу со значительным углом атаки, создавая тем самым обширный фронт ударной волны. После входа в атмосферу челнок Фаже мог планировать около 300-400км (так называемый горизонтальный маневр, "cross-range") и приземляться на вполне комфортной посадочной скорости в 150 узлов.

Над НАСА сгущаются тучи

Тут небходимо сделать краткое отступление об Америке второй половины шестидесятых, дабы читателю стало более понятным дальнейшее развитие событий. Шла чрезвычайно непопулярная и дорогостоящая война во Вьетнаме, в 1968 году там погибло почти семнадцать тысяч американцев -- больше чем потери СССР в Афганистане за все время конфликта. Движение за гражданские права чернокожих в США в том же 1968 году кульминировалось убийством Мартина Лютера Кинга и последовавшей за ним волной бунтов в крупных американских городах. Стали чрезвычайно популярными масштабные государственные социальные программы (Медикэр был принят в 1965), президент Джонсон обявил "войну против бедности" и расходы на инфраструктуру -- все это потребовало значительных государственных расходов. В конце шестидесятых началась рецессия.

В то же время значительно притупился страх перед СССР, мировая ракетно-ядерная война уже не казалось столь неизбежной как в пятидесятые годы и в дни Карибского кризиса. Программа Аполлон выполнила свое назначение, выиграв в американском общественном сознании космическую гонку с СССР. Причем выигрыш этот у большинства американцев неизбежно ассоциировался с морем денег, которым буквально залили НАСА для выполнения этой задачи. По результатам опроса Харриса 1969 г. 56% американцев считали, что стоимость программы "Аполлон" была слишком велика, а 64% -- что 4 млрд. долл. в год на разработки НАСА это слишком много.

И в НАСА, похоже, многие этого всего попросту не понимали. Уж точно этого не понимал не слишком опытный в политических делах новый директор НАСА Томас Пейн (а может просто не хотел понимать). В 1969 году им был выдвинут план действий НАСА на следующие 15 лет. Предусматривалась лунная орбитальная станция (1978 год) и лунная база (1980 год), пилотируемая экспедиции к Марсу (1983 год) и орбитальная станция на сто человек (1985 год). По среднему (т.е. базовому) варианту предполагалось, что финансирование НАСА должно будет быть увеличено с текущих 3.7 миллиардов в 1970 году до 7.65 миллиардов к началу восьмидесятых:

Все это вызвало острейшую аллергическую реакцию в Конгрессе и, соответственно, и в Белом Доме тоже. Как писал один из конгрессменов, в те годы ничего не резалось так легко и непринуждённо, как космонавтика, если сказал на заседании "эту космическую программу надо прекратить" -- популярность тебе обеспечена. В течении относительно малого периода времени один за одним были формально упразднены практически все масштабные проекты НАСА. Само собой были отменены пилотируемая экспедиция к Марсу и база на Луне, отменили даже полеты Аполло 18 и 19. Зарезали РКН Сатурн V. Отменили все гигантские космические станции, оставив только обрубок Apollo Applications в виде Скайлэба -- впрочем и там отменили второй Скайлэб. Заморозили, а потом и отменили ядерный челнок и космический буксир. Под горячую руку попал даже ни в чём неповинный Вояджер (предшественник Викинга). Космический челнок почти было попал под нож, и чудом уцелел в Палате представителей с перевесом в один-единственный голос. Вот так выглядел бюджет НАСА в реальности (постоянные доллары 2007 года):

Если посмотреть на выделяемые им средства как на % от федерального бюджета, то все еще грустней:

Практически все планы НАСА по развитию пилотируемой космонавтики оказались в мусорной корзине, а еле-еле выживший Шаттл из не самого большого элемента некогда грандиозной программы превратился во флагмана американской пилотируемой космонавтики. НАСА все еще боялась отмены программы, и для её обоснования начала убеждать всех, что Шаттл будет дешевле существующих тогда тяжелых носителей, причем без бешеного грузопотока который должен был генерироваться почившей в бозе космической инстраструктурой. Потерять челнок НАСА позволить себе не могла -- организация фактически была создана пилотируемой космонавтикой, и хотела продолжать посылать в космос людей.

Альянс с ВВС

Враждебность Конгресса сильно впечатлила функционеров НАСА, и заставила тех искать союзников. Пришлось идти на поклон в Пентагон, а точнее -- к ВВС США. Благо НАСА и ВВС довольно неплохо сотрудничали с начала шестидесятых, в частности над XB-70 и над упомянутым выше X-15. НАСА даже пошла на отмену свой Сатурн I-B (внизу справа), чтобы не создавать ненужную конкуренцию тяжелой РКН ВВС Титан-III (внизу слева):

Генералов ВВС весьма заинтересовала идея дешевого носителя, да и иметь возможность посылать людей в космос им тоже хотелось -- примерно тогда же была окончательно зарублена военная космическая станция Manned Orbiting Laboratory, примерный аналог советского "Алмаза". Еще им понравилась декларируемая возможность возврата грузов на Шаттле, рассматривались даже варианты похищения советских космических аппаратов.

Однако в целом ВВС были куда меньше НАСА заинтересованы в этом союзе, ибо свой отработанный носитель у них был и так. Из-за этого они были в состоянии легко прогнуть дизайн Шаттла под свои требования, чем и незамедлительно воспользовались. Размер грузового отсека для полезной нагрузки был по настояниям военных увеличен с 12 x 3.5 метров до 18.2 x 4.5 метров (длина x диаметр), дабы туда помещались перспективные спутники-шпионы видовой оптико-электронной разведки (конкретно -- KH-9 Hexagon и, возможно, KH-11 Kennan). Полезную нагрузку челнока надо было увеличить до 30 тонн при полете на низкую околоземную орбиту, и до 18 тонн на полярную орбиту.

Также ВВС потребовали горизонтальный маневр шаттла минимум в 1800 километров. Тут дело было вот в чем: в ходе Шестидневной войны американская разведка получила спутниковые фотографии уже после того как боевые действия конились, ибо использовавшиеся тогда спутники разведки Гамбит и Корона не успели вернуть отснятую пленку на Землю. Предполагалось, что Шаттл сможет стартовать из Ванденберга на западном побережье США на полярную орбиту, отснять что надо, и сразу же сесть после одного витка -- обеспечивая тем самым высокую оперативность получения разведданных. Необходимая дистанция бокового маневра при том определялась сдвигом Земли за время витка, и составляла как раз упомянутые выше 1800 километров. Чтобы выполнить это требование пришлось во-первых поставить на Шаттл более подходящее для планирования треугольное крыло, а во-вторых весьма сильно усилить теплозащиту. На графике ниже показан расчетный темп нагрева космического челнока с прямым крылом (концепт Фаже), и с треугольным крылом (т.е. то что оказалось на Шаттле в результате):

Ирония тут в том, что вскоре на спутники-шпионы стали ставить ПЗС-матрицы, способные передавать снимки прямо с орбиты, без необходимости возвращать пленку. Надобность в посадке после одного витка орбиты отпала, хотя потом эту возможность еще оправдывали возможностью быстрой аварийной посадки. А вот треугольное крыло и связанные с ним проблемы теплозащиты у Шаттла остались.

Впрочем дело было сделано, и поддержка ВВС в Конгрессе позволила отчасти обезопасить будущее Шаттла. В НАСА окончательно утвердили в качестве проекта двухступенчатый полностью многоразовый Шаттл, имеющий 12(!) SSME на первой ступени и разослали контракты на прорабатку его компоновки.

Проект Норт Американ Рокуэлл:

Проект МакДоннелл Дуглас:

Проект Грумман. Любопытная деталь: несмотря на требование НАСА о полной многоразовости, у челнока тем ни менее предполагались одноразовые баки для водорода по бокам:

Экономические обоснования

Выше я упомянул, что после того как Конгресс выпотрошил космическую программу НАСА, тем пришлось начать обосновывать создание челнока с экономической точки зрения. И вот, в начале семидесятых чиновники из Управления менеджмента и бюджета (The Office of Management and Budget, OMB) попросили их доказать декларируемую экономическую эффективность Шаттла. Причем надо было продемонстрировать не тот факт, что запуск челнока будет дешевле запуска одноразового носителя (это воспринималось как должное); нет, надо было сравнить выделение потребных для создания Шаттла средств с продолжением использования существующих одноразовых носителей и инвестицией высвободившихся денег под 10% годовых -- т.е. по сути в OMB дали Шаттлу "мусорный" рейтинг. Это сделало любые экономические обоснования создания челнока в качестве коммерческой ракеты-носителя нереальными, особенно после того как его "раздуло" из-за требований ВВС. И все же НАСА попыталась это сделать, ибо повторюсь, на кону стояло существование американской пилотируемой программы.

Было заказано исследование экономической целесообразности у фирмы Mathematica. Нередко упоминаемая цифра стоимости запуска Шаттла в районе $1-2.5 млн это лишь обещания Мюллера на конференции в 1969 году, когда еще не была ясна окончательная его конфигурация, и до вызванных требованиями ВВС изменений. Для проектов приведенных выше стоимость полета была следующей: 4.6 миллиона долларов образца 1970г. для челноков Норт Американ Рокуэлл и МакДоннелл Дуглас, и 4.2 миллиона долларов для челнока Груммана. Составители отчета худо-бедно смогли натянуть сову на глобус, показав, что якобы уже к середине восьмидесятых Шаттл выглядел более привлекательно с финансовой точки зрения нежели уже существующие носители, даже с учетом 10% требований OMB:

Однако дьявол кроется в деталях. Как я упомянул выше, не было никакой возможности продемонстрировать, что Шаттл, с его предполагаемой стоимостью разработки и производства в двенадцать миллиардов долларов, будет дешевле одноразовых носителей при учете 10% дисконта OMB. Так что пришлось в ходе анализа сделать допущение, что более низкая стоимость вывода позволит производителям спутников тратить значительно меньше времени и средств на научно-исследовательские и опытно-конструкторские работы (НИОКР), а также на производство спутников. Декларировалось, что они предпочтут воспользоваться возможностью дешевого вывода спутников на орбиту и ремонта оных. Далее, было предположено весьма большое количество запусков в год: базовый сценарий, показаннный на графике выше, постулировал 56 пусков Шаттла каждый год с 1978 по 1990 (736 всего). Причем в качестве предельного сценария рассматривался даже вариант с 900 полетами в указанный период, т.е. старт каждые пять дней в течении тринадцати лет!

Стоимость трех различных программ в базовом сценарии -- две одноразовые ракеты и Шаттл, 56 пусков в год (млн. долларов):

Существующая РКН Перспективная РКН Спейс Шаттл
Расходы на РКН
НИОКР 960 1 185 9 920
Стартовые сооружения, производство шаттла 584 727 2 884
Суммарная стоимость пусков 13 115 12 981 5 510
Всего 14 659 14 893 18 314
Расходы на ПН
НИОКР 12 382 11 179 10 070
Производство и постоянные расходы 31 254 28 896 15 786
Всего 43 636 40 075 25 856
Расходы на РКН и ПН 58 295 54 968 44 170

Само собой, представителей OMB этот анализ не устроил. Они совершенно справедливо указали, что даже если стоимость полета Шаттла и впрямь будет такой как указано (4.6 миллиона/полет), все равно нет никаких оснований считать будто производители спутников пойдут на снижение надежности в угоду стоимости производства. Наоборот, существующие тенденции свидетельствовали о предстоящем значительном росте средней жизни спутника на орбите (что в итоге и произошло). Далее, чиновники не менее справедливо указали, что количество космических пусков в базовом сценарии экстраполировалось из уровня 1965-1969 годов, когда немалую их долю обеспечивало НАСА, с её тогдашним гигантским бюджетом, и ВВС, с их тогдашними короткоживущими спутниками оптической разведки. До того как была порезаны все смелые планы НАСА еще можно было предполагать, что количествово пусков вырастет, но без расходов НАСА оно наверняка начало бы падать (что тоже оказалось правдой). Также, совершенно не был учтен сопутствующий всем государственным программам рост расходов: так, увеличение расходов программы Аполлон в период с 1963 по 1969 год составило 75%. Финальный вердикт OMB был следующим: предполагаемый полностью многоразовый двухступенчатый Штаттл не является экономически оправданным в сравнении с Titan-III, при учете 10% ставки.

Извиняюсь, что так много пишу о финансовых деталях которые, возможно, не всем интересны. Но это все крайне важно в контексте обсуждения многоразовости Шаттла -- тем более что упомянутые выше и, скажем честно, высосанные из пальца цифры можно до сих пор увидеть в обсуждениях про многоразовость космических систем. На самом деле, без учета "эффекта ПН" даже по принятым Mathematica цифрам и без всяких 10% дисконтов Шаттл становился выгоднее Титана только начиная с ~1100 полетов (реальные шаттлы слетали 135 раз). Но не забываем -- речь идет о "раздутом" требованиями ВВС Шаттле с треугольным крылом и сложной теплозащитой.

Шаттл становится полу-многоразовым

Никсону не хотелось быть президентом, который полностью прикроет американскую пилотируемую программу. Но и просить Конгресс выделить прорву денег на создание Шаттла он также не хотел, тем более после заключения чиновников из OMB конгрессмены все равно на это не согласились бы. На разработку и производству Шаттлов было решено выделить около пяти c половиной миллиардов долларов (т.е. более чем в два раза меньше чем тем надо было для полностью многоразового Шаттла), с требованием тратить не больше миллиарда в любой отдельно взятый год.

Дабы суметь в рамках выделенных средств создать Шаттл, было сделать систему частично многоразовой. Сначала был творчески переосмыслен концепт Грумман: размер челнока сумели уменьшить поместив обе топливные пары во внешний бак, заодно уменьшился и потребный размер первой ступени. На схеме ниже показан размер полностью многоразового космоплана (reusable), космоплана со внешним баком для водорода (LH2) и космоплана со внешним баком и для кислорода и для водорода (LO2/LH2).

Но стоимость разработки все еще сильно превышала количество выделенных из бюджета средств. В результате НАСА пришлось еще и отказаться от многоразовой первой ступени. К вышеупомянутому баку было решено присоединить некий простой бустер, либо в параллель, либо внизу бака:

После недолгих обсуждений было утверждено размещение бустеров в параллель с внешним баком. В качестве бустеров рассматривалось два основных варианта: твердотопливные (ТТУ) и ЖРД ускорители, последние либо с турбокомпрессором, либо с вытеснительной подачей компонентов. Было решено остановится на ТТУ, опять же в силу более низкой стоимости разработки. Иногда можно услышать что якобы имелось некое обязательное требование использовать ТТУ которые -де все и испортило -- но, как видим, замена ТТУ на бустеры с ЖРД уже ничего бы не смогла исправить. Более того, у плюхающихся в океан бустеров на ЖРД, пусть и с вытеснительной подачей компонентов, проблем на деле было бы еще больше чем с твердотопливными ускорителями.

В результате получился тот Спейс Шаттл, который мы и знаем сегодня:

Ну и краткая история эволюции оного (кликабельно):

Эпилог

Шаттл не был столь неудачной системой какой его принято нынче выставлять. В восьмидесятых годах Шаттл вывел на околоземную орбиту 40% от всей доставленной в то десятилетие массы ПН, несмотря на то что его пуски составляли лишь 4% из общего количеств пусков РКН. Он также доставил в космос львиную долю из побывавших там на сегодняшний день людей (другое дело, что сама необходимость наличия людей на орбите по-прежнему неясна):

В ценах 2010 год стоимость программы составляла 209 миллиардов, если разделить это на количество пусков выйдет где-то 1.5 миллиарда за пуск. Правда основная часть расходов (проектирование, модернизация и др.) не зависит от числа запусков -- поэтому по оценкам НАСА к конце нулевых стоимость каждого полёта составляла около 450 миллионов долларов. Впрочем это ценник уже под завершение программы, да еще и после катастроф Челленджера и Колумбии, которые привели к дополнительным мерам безопасности и росту стоимости пуска. По идее в середине 80-ых, до катастрофы Челленджера, стоимость пуска была гораздо меньше, но конкретных цифр у меня нет. Разве что укажу на тот факт, что у Titan IV Centaur стоимость пуска в первой половине девяностых годов составляла 325 миллионов тех долларов, что даже слегка превышает указанную выше стоимость пуска Шаттла в ценах 2010 года. А ведь именно тяжелые РН из семейства Титан были конкурентом Шаттла в ходе его создания.

Разумеется, Шаттл не был экономически эффективным с коммерческой точки зрения. К слову, экономическая нецелесообразность оного весьма взволновала в свое время руководство СССР. Они не понимали политических причин которые привели к созданию Шаттла, и придумывали ему различные предназначения, чтобы хоть как-то увязать в голове его существование со своими взглядами на действительность -- тот самый знаменитый "нырок на Москву", или базирование оружия в космосе. Как вспоминал в 1994-м году директор головного в ракетно-космической промышленности Центрального НИИ машиностроения Ю.А.Мозжорин: "Челнок выводил на околоземную орбиту 29,5 т, и мог спускать с орбиты груз до 14,5 т. Это очень серьезно, и мы начали изучать, для каких целей он создается? Ведь все было очень необычно: вес, выводимый на орбиту при помощи одноразовых носителей в Америке, даже не достигал 150 т/год, а тут задумывалось в 12 раз больше; ничего с орбиты не спускалось, а тут предполагалось возвращать 820 т/год... Это была не просто программа создания какой-то космической системы под девизом снижения затрат на транспортные расходы (наши, нашего института проработки показали, что никакого снижения фактически не будет наблюдаться), она имела явное целевое военное назначение. И действительно, в это время начали говорить о создании мощных лазеров, лучевого оружия, оружия на новых физических принципах, которое - теоретически - позволяет уничтожать ракеты противника на расстоянии в несколько тысяч километров. Как раз вот создание такой системы и предполагалось для отработки этого нового оружия в космических условиях ". Свою роль в этой ошибке сыграло то, что Шаттл делался с учётом требований ВВС, но в СССР не поняли причин, по которым ВВС был втянут проект. Они думали, что проект изначально инициирован военными, и делается с военными целями. На самом деле, НАСА позарез нужен был Шаттл чтобы остаться на плаву, и если бы поддержка ВВС в Конгрессе зависела от того, что ВВС потребовал бы покрасить Шаттл в зелёный цвет и украсить его гирляндами -- они бы это сделали. В восьмидесятых Шаттл уже попытались притянуть к программе СОИ, но когда его проектировали в семидесятых ни о чем таком и речи еще не шло.

Надеюсь теперь читателю понятно, что судить о многоразовости космических систем на примере Шаттла это крайне неудачная затея. Грузовые потоки под которые делался челнок никогда не материализовались из-за урезания расходов НАСА. Дизайн Шаттла пришлось серьезным образом менять дважды -- сначала из-за требований ВВС, политическая поддержка которых нужна была НАСА, а затем из-за критики OMB и недостаточного размера ассигнований на программу. Все экономические обоснования, отсылки к котором иногда попадаются в обсуждениях многоразовости, появились в период когда НАСА нужно было любой ценой спасти и так уже сильно мутировавший из-за требований ВВС челнок, и являются попросту притянутыми за уши. Причем все участники программы это все понимали -- и Конгресс, и Белый Дом, и ВВС, и НАСА. Например Michoud Assembly Facility мог от силы производить двадцать с чем-то внешних топливных баков в год, то есть ни о каких пятидесяти шести или даже тридцати с чем-то полетах в год, как в отчете Mathematica, и речи не могло идти.

Почти всю информацию я взял из замечательной книги , которую я рекомендую к прочтению всем интересующимся вопросом. Также некоторые отрывки текста были позаимствованы из постов ув. Tico в этом топике.

May 3rd, 2016

Одним из главных элементов экспозиции национального музея авиации и космонавтики Smithsonian (Центр имени Удвара Хейзи) является космический шаттл “Дискавери”. Собственно данный ангар в первую очередь и был построен, чтобы принять космический корабль NASA после завершения программы Спейс Шаттл. В период активного использования челноков, в центре Удвара Хейзи был выставлен тренировочный корабль Энтерпрайз, использовавшийся для испытаний в атмосфере и как весово-габаритная модель, перед созданием первого, по-настоящему космического челнока “Колумбии”.


Космический шаттл “Дискавери”. За 27 лет службы этот челнок побывал в космосе 39 раз.

Корабли построенные в рамках программы «Космическая транспортная система»
Схема корабля

К сожалению, большей части амбициозных планов агентства так и не суждено было сбыться. Высадка на Луне решила все политические задачи США в космосе на тот момент, а практического интереса полёты в дальний космос не представляли. Да и интерес общественности стал угасать. Кто сейчас сходу вспомнит имя третьего человека на Луне? На момент последнего полёта корабля Аполлон по программе "Союз-Апполон" в 1975 году финансирование американского космического агентства было радикально сокращено по решению президента Ричарда Никсона.

У США были более насущные проблемы и интересы на Земле. В итоге дальнейшие пилотируемые полёты американцев вообще оказались под вопросом. Недостаток финансирования и повышенная солнечная активность привели и к тому, что NASA потеряла станцию Skylab , проект, намного опередивший своё время и имевший преимущества даже перед сегодняшней МКС. У агентства просто не было кораблей и носителей, чтобы вовремя поднять её орбиту, и станция сгорела в атмосфере.

Спейс Шаттл "Дискавери" - носовая часть
Видимость из кабины пилотов достаточно ограниченная. Также видны носовые форсунки двигателей системы ориентации.

Всё, что на тот момент удалось сделать NASA, это подать программу космического челнока как экономически целесообразную. Спейс Шаттл должны были взять на себя как обеспечение пилотируемых полётов, запуск спутников, а так же их ремонт и обслуживание. NASA обещала взять на себя все запуски космических аппаратов, включая военные и коммерческие, что за счёт использования многоразового корабля, могло бы вывести проект на самоокупаемость при условии нескольких десятков запусков в год.

Спейс Шаттл "Дискавери" - крыло и панель питания
В задней части челнока, возле двигателей видна панель питания, через которую корабль был подсоединён на стартовом столе, в момент запуска панель отделялась от челнока.

Забегая вперёд, скажу, что на самоокупаемость проект так никогда и не вышел, но на бумаге всё выглядело достаточно гладко (возможно так и было задумано), поэтому на строительство и обеспечение кораблей деньги выделены были. К сожалению, построить новую станцию у NASA возможности не было, все тяжёлые ракеты “Сатурн” были истрачены в лунной программе (последняя запустила Skylab), а на строительство новых не было средств. Без космической станции Спейс Шаттл имели достаточно ограниченное время пребывания на орбите (не более 2 недель).

Вдобавок запасы dV многоразового корабля были намного меньше, чем у одноразовых советских Союзов или американских же Аполлонов. В результате Спейс Шаттл имел возможность выхода лишь на низкие орбиты (до 643 км), во многом именно этот факт предопределил, что и на сегодняшний день, 42 года спустя, последним пилотируемым полётом в дальний космос была и остаётся миссия Аполлона-17.

Хорошо видны крепления створок грузового отсека. Они достаточно маленькие и сравнительно хрупкие, так как грузовой отсек открывался только в невесомости.

Спейс Шаттл “Индевор” с открытым грузовым отсеком. Сразу позади кабины экипажа виден стыковочный узел для работы в составе МКС.

Космические челноки были способы поднимать на орбиту экипаж до 8 человек и, в зависимости от наклонения орбиты, от 12 до 24,4 тонн грузов. И, что немаловажно, спускать с орбиты грузы весом до 14,4 тон и выше при условии, что они вмещались в грузовой отсек корабля. Советские и российские космические аппараты такими возможностями не обладают до сих пор. Когда NASA опубликовала данные по грузоподъёмности грузового отсека Спейс Шаттл, в Советском Союзе всерьёз рассматривали идею похищения советских орбитальных станций и аппаратов кораблями Спейс Шаттл. Предлагалось даже оснащать советские пилотируемые станции вооружением, для защиты от возможного нападения челнока.

Сопла системы ориентации корабля. На тепловой обшивке хорошо видны следы от последнего входа корабля в атмосферу.

Корабли Спейс Шаттл активно использовались для орбитальных запусков беспилотных аппаратов, в частности, космического телескопа Хаббл. Наличие экипажа и возможность ремонтных работ на орбите позволяли избегать постыдных ситуаций в духе Фобос-Грунт. Так же Спейс Шаттл работал с космическими станциями по программе Мир-Спейс Шаттл в начале 90-х и до недавнего времени доставлял модули для МКС, которые при этом не требовалось оснащать собственной двигательной установкой. Из-за высокой стоимости полётов полностью обеспечить ротацию экипажей и снабжение МКС (по задумке разработчиков - свою основную задачу) корабль не смог.

Спейс Шаттл "Дискавери" - керамическая обшивка.
Каждая плитка обшивки имеет свой серийный номер и обозначение. В отличии от СССР, где для программы “Буран” плитки керамической обшивки делали с запасом, НАСА построила цех где специальная машина по серийному номеру изготавливала плитку нужных размеров автоматически. После каждого полёта приходилось заменять несколько сотен таких плиток.

Схема полёта корабля

1. Старт - зажигание двигательные установки I и II ступеней, управление полетом осуществляется отклонением вектора тяги двигателей челнока, и до высоты порядка 30 километров дополнительно управление обеспечивается отклонением руля. Ручное управление на этапе взлёта не предусмотрено, корабль управляется компьютером, аналогично обычной ракете.

2. Отделение твердотопливных ускорителей происходит на 125 секунде полета при достижении скорости 1390 м/с и высоты полета около 50 км. Чтобы не повредить челнок, они отделяются с помощью восьми малых ракетных двигателей на твердом топливе. На высоте 7,6 км ускорители раскрывают тормозной парашют, а на высоте 4,8 км - основные парашюты. На 463 секунде с момента старта и на расстоянии 256 км от места старта происходит приводнение твердотопливных ускорителей, после чего их буксируют к берегу. В большинстве случаев ускорители удавалось заправлять и использовать повторно.

Видеозапись полёт в космос с камер твердотопливных ускорителей.

3. На 480 секунде полета происходит отделение подвесного топливного бака (оранжевого цвета), учитывая скорость и высоту отделения, спасение и повторное использование топливного бака потребовало бы оснастить его такой же тепловой защитой, как и сам челнок, что, в конечном счёте, сочли нецелесообразным. По баллистической траектории бак падает в Тихий или Индийский океан, разрушаясь в плотных слоях атмосферы.
4. Выход орбитального корабля на околоземную орбиту, с помощью двигателей системы ориентации.
5. Выполнение программы орбитального полёта.
6. Ретроградный импульс гидразиновыми двигателями ориентации, сход с орбиты.
7. Планирование в земной атмосфере. В отличие от “Бурана” посадка осуществляется только вручную, поэтому без экипажа корабль летать не мог.
8. Посадка на космодром, корабль приземляется со скоростью около 300 километров в час, что намного выше скорости посадки обычных самолётов. Для сокращения тормозного пути и нагрузки на шасси, сразу после касания раскрываются тормозные парашюты.

Двигательная установка. Хвост челнока способен раздваиваться, выступая на заключительных этапах посадки воздушным тормозом.

Несмотря на внешнее сходство, космоплан имеет очень мало общего с самолётом, это скорее очень тяжёлый планер. Шаттл не имеет собственных запасов топлива для основных двигателей, поэтому двигатели работают только пока корабль соединён с оранжевым топливным баком (по этой же причине двигатели установлены ассиметрично). В космосе и во время посадки корабль использует только маломощные двигатели ориентации и два маршевых двигателя на гидразиновом топливе (малые двигатели по бокам от основных).

Были планы снабдить Спейс Шаттлы реактивными двигателями, но из-за высокой стоимости и снижения полезной нагрузки корабля весом двигателей и топлива, от реактивных двигателей решили отказаться. Подъёмная сила крыльев корабля небольшая, а сама посадка осуществляется исключительно за счёт использования кинетической энергии схода с орбиты. По сути, корабль планировал с орбиты прямо на космодром. По этой причине у корабля есть только одна попытка для захода на посадку, развернуться и зайти на второй круг челнок уже не сможет. Поэтому НАСА построила по всему миру несколько резервных полос для посадки челноков.

Спейс Шаттл "Дискавери" - люк экипажа.
Эта дверь используется для посадки и высадки членов экипажа. Люк не снабжён воздушным шлюзом и в космосе блокируется. Выходы в открытый космос, стыковку с Мир и МКС экипаж выполнял через шлюз в грузовом отсеке на “спине” корабля.

Герметичный костюм для взлёта и посадки космического челнока.

Первые тестовые полёты челноков снабжались креслами-катапультами, которые позволяли аварийно покинуть корабль, потом катапульту убрали. Так же был один из аварийных сценариев посадки, когда экипаж покидал корабль на парашютах на последнем этапе спуска. Характерный оранжевый цвет костюма был выбран для упрощения проведения спасательных работ в случае аварийной посадки. В отличие от космического скафандра, этот костюм не имеет системы тепло-распределения и для выхода в открытый космос не предназначен. В случае полной разгерметизации корабля даже при наличии гермокостюма шансов выжить хотя бы несколько часов - немного.

Спейс Шаттл "Дискавери" - шасси и керамическая обшивка днища и крыла.

Скафандр для работы в открытом космосе программы Спейс Шаттл.

Катастрофы
Из 5 построенных кораблей 2 погибли вместе со всем экипажем.

Катастрофа Шаттла “Челленджер” миссия STS-51L

28 января 1986 года челнок “Челленджер” взорвался через 73 секунды после старта из-за аварии уплотнительного кольца твердотопливного ускорителя, прорвавшаяся сквозь щель, струя огня расплавила топливный бак и привела ко взрыву запаса жидкого водорода и кислорода. Экипаж, по всей видимости, уцелел непосредственно во взрыве, но кабина не была оборудована парашютами или другими средствами спасения и разбилась о воду.

После катастрофы Челленджера, NASA разработала несколько процедур спасения экипажа, во время взлёта и посадки, но ни одни из этих сценариев всё равно не смог бы спасти экипаж “Челленджера”, даже если бы он был предусмотрен.

Катастрофа шаттла “Колумбия” миссия STS-107
Обломки шаттла “Колумбия” сгорают в атмосфере.

Участок тепловой обшивки кромки крыла оказался повреждён при запуске двумя неделями ранее, отвалившимся куском теплоизоляционной пены, покрывающей бак с топливом (бак заполняется жидким кислородом и водородом, поэтому изоляционная пена позволяет избежать образование льда и уменьшить испарение топлива). Этот факт заметили, но не придали должного значения исходя из того, что в любом случае астронавты мало что могут сделать. В результате пролёт проходил штатно до этапа возвращения в атмосферу 1 февраля 2003 года.

Здесь хорошо заметно, что тепловой щит покрывает только кромку крыла. (Именно здесь “Колумбия” получила повреждение).

Под воздействием высоких температур плитка тепловой обшивки разрушилась и на высоте около 60 километров, высокотемпературная плазма прорвалась в алюминиевые конструкции крыла. Ещё через несколько секунд крыло разрушилось, на скорости порядка 10 мах, корабль потерял устойчивость и был уничтожен аэродинамическими силами. До того как в экспозиции музея появилась “Дискавери”, на этом же месте был выставлен Энтерпрайз (Тренировочный шаттл который совершал только атмосферные полёты).

Комиссия по расследованию инцидента вырезала фрагмент крыла музейного экспоната для проведения экспертизы. Специальной пушкой по кромке крыла выстреливались куски пены и оценивался ущерб. Именно этот эксперимент помог прийти к однозначному заключению о причинах катастрофы. Большую роль в трагедии сыграл и человеческий фактор, сотрудники NASA недооценили ущерб, полученный кораблём на этапе старта.

Простой обзор крыла в открытом космосе мог выявить повреждение, но ЦУП не дал экипажу такой команды, считая, что проблему можно решить по возвращению на Землю, а даже если повреждения необратимы, экипаж всё равно ничего не сможет сделать и нет смысла напрасно волновать астронавтов. Хотя это было не так, к старту готовился челнок “Атлантис”, который можно было бы использовать для проведения спасательной операции. Аварийный протокол, который примут на вооружение во всех последующих полётах.

Среди обломков корабля удалось найти видеозапись которую астронавты вели во время входа в атмосферу. Официально запись обрывается за несколько минут до начала катастрофы, но я сильно подозреваю, что NASA решила не публиковать последние секунды жизни астронавтов по этическим соображениям. Экипаж не знал о грозящей им гибели, глядя на бушующую за иллюминаторами корабля плазму кто-то из астронавтов шутит “Не хотелось бы сейчас оказаться снаружи”, не зная, что именно этого ждёт весь экипаж буквально через несколько минут. Жизнь полна мрачной иронии.

Прекращение программы

Логотип окончания программы Спейс Шаттл (слева) и памятная монета (справа). Монеты изготовлены из металла побывавшего в космосе в рамках первой миссии шаттла “Колумбия” STS-1

Гибель космического шаттла "Колумбия" поставила серьёзный вопрос о безопасности оставшихся 3 кораблей, находившихся к тому моменту в эксплуатации свыше 25 лет. В результате, последующие полёты стали проходить с сокращённым экипажем, а в резерве всегда держали ещё один челнок, готовый к пуску, который смог бы провести спасательную операцию. В сочетании со сменой акцентов правительства США на коммерческое освоение космоса, эти факторы привели к прекращению программы в 2011 году. Последним полётом челноков стал старт «Атлантиса» к МКС 8 июля 2011 года.

Программа Спейс Шаттл сделала огромный вклад в освоение космоса и развития знаний и опыта о работе на орбите. Без Спейс Шаттл, строительство МКС было бы совершенно другим и вряд ли на сегодняшний день было бы близко к завершению. С другой стороны, существует мнение, что программа Спейс Шаттл сдерживала NASA последние 35 лет, требуя больших затраты на обслуживание челноков: стоимость одного полёта составляла около 500 миллионов долларов, для сравнения, - запуск каждого “Союза” обходился всего в 75-100.

Корабли потребляли средства, которые могли бы пойти на развитие межпланетных программ и более перспективных направлений в исследовании и развитии космоса. Например, строительство более компактного и дешёвого многоразового или одноразового корабля, для тех миссий, где 100 тонный Спейс Шаттл был просто не нужен. Откажись NASA от Спейс Шаттл, развитие космической отрасли США могло бы пойти совсем по-другому.

Как именно, сейчас уже трудно сказать, возможно, у NASA просто не было выбора и не будь челноков, гражданское освоение космоса Америкой могло вообще прекратиться. Уверенно утверждать можно одно, на сегодняшний день корабли Спейс Шаттл были и остаются единственным примером успешной многоразовой космической системы. Советский “Буран” хоть и был построен как многоразовый корабль, в космосе побывал только однажды, впрочем, это совсем другая история.

Взят у lennikov в Виртуальная экскурсия по национальному аэрокосмическому музею Smithsonian: часть вторая

Жми на кнопку, чтобы подписаться на "Как это сделано"!

Если у вас есть производство или сервис, о котором вы хотите рассказать нашим читателям, пишите Аслану ([email protected] ) и мы сделаем самый лучший репортаж, который увидят не только читатели сообщества, но и сайта Как это сделано

Подписывайтесь также на наши группы в фейсбуке, вконтакте, одноклассниках и в гугл+плюс , где будут выкладываться самое интересное из сообщества, плюс материалы, которых нет здесь и видео о том, как устроены вещи в нашем мире.

Жми на иконку и подписывайся!

На написание этой статьи меня сподвигли многочисленные обсуждения в форумах и даже статьи в серьезных журналах,в которых я сталкивался со следующей позицией:

«США активно разрабатывают ПРО (истребители 5-ого поколения,боевых роботов и т.п.). Караул! Они же ведь не дураки, деньги считать умеют и не будут делать ерунду???»

Дураки не дураки, но махинаций, тупости и «попила бабла» у них всегда было выше крыши - стоит только присмотреться к мегапроектам США повнимательней.

Они постоянно пытаются создать чудо-оружие или такую чудо-технику, которая надолго посрамит всех врагов/конкурентов и заставит их трепетать от немыслимой технологической мощи Америки. Делают эффектные презентации, сыпят потрясающими воображение данными, поднимают огромную волну в СМИ.

Заканчивается же всегда все банально - успешным надувательством налоплательщиков в лице Конгресса, выбиванием огромных денег и провальным результатом.

Вот например, история программы Space Shuttle - одна из типичных американских погонь за химерой.

Здесь на всех этапах, от постановки задачи до эксплуатации, руководством НАСА была допущена серия грубейших ошибок/махинаций, которые привели в итоге к созданию фантастически неэффективного Шаттла, досрочному закрытию программы и похоронили разработку национальной орбитальной станции.

Как все начиналось:

В конце 60-х годов, еще до высадки на Луну, в США было принято решение урезать (а потом и закрыть) программу «Аполлон». Производственные мощности стали быстро сокращаться, сотни тысяч рабочих и служащих подлежали увольнению. Огромные расходы на Вьетнамскую войну и космическую/военную гонку с СССР подорвали бюджет США и надвигался один из сильнейших экономических спадов в их истории.

Финансирование НАСА урезалось все сильнее с каждым годом и будущее американской пилотируемой космонавтики оказалось под угрозой. В Конгрессе крепли голоса критиков, которые говорили, что НАСА бессмысленно пускает деньги налогоплательщиков на ветер в то время, когда недофинансируются важнейшие социальные статьи в бюджете страны. С другой стороны, весь свободный мир с замиранием сердца следил за каждым жестом светочей демократии и ждал эффектного космического разгрома тоталитарных русских варваров

В то же время было ясно, что СССР не собирается отказываться от соревнования в космосе и что даже успешная высадка на Луну не может стать поводом успокоиться на достигнутом.

Нужно было срочно решать, что делать дальше. Для этого под эгидой администрации Президента была создана специальная рабочая группа ученых, которая занялась выработкой дальнейших планов развития в американской комонавтики..

Тогдабыло уже очевидно, что СССР пошел по пути развития техники орбитальных станций (ОС), в то время как участие в лунной гонке активно отрицалось советским официозом.

так, в 1968 году на орбите были состыкованы «Союз-4» и «Союз-5» и совершен переход через открытый космос из одного корабляв другой. В ходе перехода космонавты отрабатывали действия по выполнению монтажных работ в космосе, а весь проект был разрекламирован как «первая в мире экспериментальная орбитальная станция». Вся мировая пресса была наполнена восхищенными откликами. Стыковку «Союзов» некоторые оценивали даже выше облета Аполлоном-8 Луны.

Столь большой резонанс воодушевилруководство СССР и в 69-ом был затеян полет сразу трех «Союзов». Двое должны были состыковаться, а третий полетать вокруг, делая эффектный репортаж. То есть, была явно задумана игра на публику. Но задуманное не вышло, подвела автоматика и состыковаться не удалось. Тем не менее, был получен ценный опыт взаимного маневрирования на орбите, проведен уникальный эксперимент по сварке/пайке в вакууме, отработано взаимодействие наземных служб с кораблями на орбите. Так что групповой полет был объявлен в целом успешным и после приземления космонавтов, на митинге, Брежнев уже официально заявил о том, что «орбитальные станции - магистральный путь в космонавтике».

Что могла противопоставить Америка? Вообще-то проект создания своей ОС начался в США еще задолго до этих событий, но он почти не двигался с места, так как все возможные ресурсы были направлены на обеспечение скорейшей высадки на Луну. Сразу после того, как А11 наконец побывал на Луне, вопрос о строительстве ОС встал в НАСА в полный рост.

Тогда в НАСА решили максимально быстро построить из имевшихся наработок ОС Skylab (в двух экземплярах), отменили две из последних высадок на Луну, высвободив ракеты Сатурн-5 подвывод на орбиту этих станций. В какой спешке строили «Скайлэб» и какая ерунда при этом получилась - это отдельная песня.

Худо-бедно, они на время прикрыли «дыру» в этом соревновании. Но в любом случае программа Скайлэббыла заведомо тупиковой, поскольку ракеты-носители необходимые для ее развития были уже давно сняты с производства, летать приходилось на остатках.

Что предложили

Тогда «Группой по планированию космической деятельности» было предложено в ближайшие годы (после полета Скайлэба) создать огромную орбитальную станцию, с экипажем в десятки человек и к ней многоразовый космический челнок, возящий грузы и людей на станцию и обратно. Основной упор был сделан на то, что планируемый челнок будет настолько дешевым в эксплуатации и надежным, что полеты человека в космос станут почти такими же рутинными и безопасными, как и полеты гражданских авиалайнеров.

(вот тогда русские мол и утрутся со своими керосиновыми одноразовыми ракетами)

Исходный проект НАСА по постройке челнока был вполне рациональным:

Они предложили сделать космическую транспортную систему, состоящую из двух крылатых полностью многоразовых ступеней: «Бустера» («Разгонщика») и«Орбитера».

Выглядело это так:один большой «самолет» везет на спине другой, поменьше. Полезная нагрузка была ограничена 11 тоннами (это важно!) . Главное предназначение челнока было - обслуживать будущую орбитальную станцию. Именно большая ОС могла бы создать достаточно большой грузопоток на орбиту и главное - с нее.

Размер «Бустера» должен был быть сравним с размерами Боинга-747 (где-то 80 метров длиной), а размер «Орбитера» - как Боинг-707 (около 40 метров). Обе ступени предполагалось оснастить самыми лучшими двигателями -кислород-водородными. После взлета«Бустер», разогнав «Орбитер» - отделялся бы на пол-пути и возвращался/планировал бы сам на базу.

Стоимость запуска такого челнока составила бы около 10 млн. долларов (в ценах тех лет), при условии достаточно частых полетов, 40-60 раз в год. (для сравнения, стоимость запуска лунного Сатурна-5 тогда составляла200 млн. долларов)

Естественно, что идея создать такой дешевый и простой в плане эксплуатации орбитальный транспорт пришлась в Конгрессе/Администрации по душе. Пусть экономика на пределе, негры громят города- но мы разок еще раз поднапряжемся, сделаем суперштучку -зато потом как залета-а-е-е-е-м!

Все это замечательно, но на создание только суперчелнока НАСА хотело 9 миллиардов долларов минимум, а правительство соглашалось выделить только 5, да и то только при условии активного участия в финансировании военных.А на большую станцию деньги вообще давать отказались, резонно посчитав, что уже выделенных миллиардов на программу 2-х станций Скайлэб, (которым еще только предстояло полететь) - вполне достаточно на тот момент.

Но в НАСА взяли под козырек и родилив итоге такой вариант:

Во-первых, для такого длинного бокового маневра потребовались мощные крылья, которые увеличили вес челнока. Кроме того, теперь челноку - «Орбитеру» не хватало внутренних топливных баков, чтобы вывести 30 тонн груза на орбиту. Пришлось прилепить к нему огромный внешний бак.Этот бак, естественно, пришлось сделать одноразовым (спустить неповрежденным с орбиты такую тонкостенную хрупкую конструкцию очень сложно). Кроме того, встала проблема создания мощнейших водородных двигателей, способныхподнять всю эту махину. В НАСА реалистично оценили возможности в этом плане и снизили требования по максимальной тяге к маршевым двигателям, приделав им в помощь два огромных твердотопливных ускорителя (ТТУ) по бокам. Вышло, что водородный «Бустер» вообще пропал из конфигурации, выродившись в дверакеты-переростка от «Катюши».

Так наконец сформировался проект Шаттла в его современном виде. При «помощи» военных и под видом удешевления и ускоренияразработки Насовцы изуродовали исходный проект до неузнаваемости. Тем не менее, он был успешно утвержден в 1972 году и принят к исполнению.

Забегая вперед, скажем, что даже на это убожество они все равно потратили далеко не 5 миллиардов, как обещали.Разработка Шаттлауже к 80-ому годуобошлась им в 10 милиардов (в ценах 77 года) или около 7 миллиардов в ценах 71-ого года. Заметим, что идея с созданием станции отодвинулась пока на неопределенный срок и поэтому под новый проект Шаттла придумали новые задачи.

А именно,назначение Шаттла по ходу перепланировали под якобы сверхдешевый запуск коммерческих и военных спутников - всех подряд, от легких до сверхтяжелых, а также возврат спутников с орбиты.

Тут правда возникла нехорошая заковыка.Спутников тогда просто не делали так много, чтобы окупить частые запуски огромной ракеты. Но наши смелые ученые не растерялись! Они наняли частного подрядчика - фирму «Математика», которая очень дальновидно спрогнозировала в недалеком будущем просто огромные потребности в запусках. Сотни! Тысячи запусков! (кто бы сомневался)

В принципе, уже на этом этапе, на стадии утвержденного в 1972-ом году проекта, было ясно, что Шаттл никогда не станет дешевым средством вывода на орбиту, даже если дальше все пойдет как по маслу. Чудес ведь не бывает - нельзя вытащить в три раза более тяжелый груз на орбиту, потратив все те же 10-15 млн долларов, рассчитанные для исходной гораздо более легкой и продвинутой системы. Не говоря уж о том, что все расчеты по стоимости были приведены для полноценно многоразового аппарата, каким Шаттл уже не получался по определению.

Да и сама идея - выводить каждый раз на орбиту 100-тонный челнок с людьми, только для того, чтобы доставить в космос в лучшем случае десяток-другой тонн полезного груза - сильно попахивает абсурдом.

Однако как ни удивительно - все цифры и обещаниякакие были исходными для первоначального проекта были автоматически продекларированы и для кастрированного варианта!

Хотя потеря почти всех преимуществ относительно одноразовых ракет была очевидна. Например,стоимость спасения из океана, восстановления, транспортировки и сборки одних только твердотопливных ускорителей оказалась ненамного меньше стоимости изготовления новых.

Кстати, фирма «Тиокол Кемикл» выиграла конкурс на разработку твердотопливных ускорителей, занизив в три раза реальную стоимость расходов на транспортировку. Очередной маленький пример из тонн мухлежа и попила бюджета, сопровождавшихразработку Space Shuttle .

С обещанной безопасностью тоже оказался полный швах: твердотопливные ускорители невозможно остановить после поджига и отстрелить их тоже нельзя, в то время как экипаж лишен каких-либо средств спасения при старте. Но кого это волнует? НАСА было так увлечено освоением бюджета, что ничтоже сумняшесяобъявило в Конгрессе про достигнутую 100% надежность ТТУ. То есть, их авария не может произойти вообще никогда в принципе.

Как в воду глядели…

Что в итоге получилось

Но пришла беда - отворяй ворота, все оказалось еще веселее, когда дело дошло до реальной разработки и эксплуатации.

Напомню:

По замыслам разработчиков, Шаттл должен был стать многоразовой сверхнадежной и безопасной транспортной системой, с рекордно низкой стоимостью вывода на орбиту грузов и людей. Частоту полетов предполагалосьдовести до 50 в год.

Но гладко было на бумаге…

Табличка ниже наглядно показывает, насколько «удачным» в итоге получился Шаттл

Все цены приведены к долларам 71-ого года:

Характеристика

Что хотели

Что реально получилось

Первый запуск

Стоимость разработки

5 миллиардов

7 миллиардов

Грузоподъемность

Длительность подготовки к след. запуску после приземления

Стоимость запуска

10 миллионов долл.

Около 150 миллионов

Макс. время на орбите

Надежность твердотопливных ускорителей

Вероятность катастрофы декларировалась нулевая

Взрыв Челенджера из-за прорыва межсекционной прокладки в ТТУ.

Таким образом,то что вышло, оказалось ровно наоборот

Не многоразовым

Недостаточно надежным и крайне опасным в случае аварии

С рекордно высокой стоимостью достижения орбиты.

Не многоразовый - потому что после полета Шаттла теряетсявнешний бак, приходят в негодность многие критические элементы системы или им требуется дорогостоящее восстановление. А именно:

Восстановление твердотопливных ускорителей обходится почти в половину стоимости изготовления новых, плюс транспортировка, плюс содержание инфраструктуры по вылову их в океане.

После каждой посадки капитальный ремонт проходят маршевые движки, хуже того - их ресурс оказался настолько низким, что пришлось изготовить к 5 челнокам дополнительно аж 50 маршевых двигателей!

Шасси полностью заменяются;

Теплозащитное покрытие планера после каждого полета требуют длительного восстановления. (вопрос - а что тогда по-настоящему многоразового в системе Space Shuttle ? остается только корпус челнока)

Получилось, что перед каждым стартом «многоразовый» Орбитер нуждается в длительном дорогостоящем восстановлении, продолжающемся месяцами. Да плюс сами старты постоянно и надолго откладываются из-за многочисленных неполадок. Иногда даже приходится снимать узлы с одного челнока, чтобы как можно быстрее запустить другой. Все это лишает МТКС способности к частым запускам (того, что хоть как-то могло удешевить эксплуатацию).

Далее, как уже упоминалось, при разработке НАСА уверяло Конгресс, что надежность ТТУ можно условно считать за 1. Поэтому никаких систем спасения на старте не было предусмотрено и сэкономили на этом неплохо. За что и поплатился экипаж Челенджера.

Сама же катастрофа произошла по вине руководства НАСА, которое с одной стороны, пыталось любой ценой поднять частоту запусков до максимума (чтобы снизить издержки и изобразить хорошую мину при плохой игре), а с другой - проигнорировало эксплуатационные требования к ТТУ, не допускавшие запуск при минусовых температурах. А тот злополучный запуск уже много раз переносился и дальнейшее ожидание срывало весь график полетов.Поэтому на температурные условия наплевали, дали добро на старт и подмороженная межсекционная прокладка в ТТУ, потеряв эластичность, прогорела, вырвавшийся факел прожег внешний бак и …. Ба-бах!

После катастрофы Челенджера пришлось усилить, утяжелить конструкцию, из-за чего требуемая грузоподъемность так и не была никогда достигнута. В итоге Шаттл выводит на орбиту полезного груза лишь чуть больше нашего Протона.

Кроме того,этакатастрофа помимо двухлетней задержки в полетах привела в итоге к срыву той самой долгожданной программы ОС «Фридом», на разработку которой, между прочим, было в итоге потрачено 10 миллиардов долларов! Из-за сниженной реальной грузоподьемности разработчики «Фридома» так и не смогли вписать в грузовой отсек модули станции.

Что касается катастрофы Колумбии - то проблемы с повреждением ТЗП при старте были известны с самого начала, но они точно так же игнорировались. Хотя опасность была очевидна! И она до сих пор сохраняется, так как кардинального решения эта проблема так и не получила.

В итоге,на сегодня Шаттлы не отлетали даже 30% запланированных полетов и программа будет закрыта к 2010 году, иначе вероятность очередной катастрофы недопустимо велика!

____________________________
Обновление от 2.11.09, МиниФАК по итогам обсуждения:
Возражение: Почему это «Шаттл» провалился? Он 30 лет летал, и налетал побольше чем «Союзы».

Ответ:Он однозначно провалился хотя бы потому, что должен был сделать по плану около 500 полетов, а сделает всего около 130, и далее полеты прекращаются по причине концептуальной и технической несостоятельности проекта .

Программа выполнена на 30% - это что, успешная программа? Ну хорошо, на 30% она удалась. Вам полегчало?

Что касается «налетал больше «Союза», то тут смотря как считать.Действительно, ПИЛОТИРУЕМЫЙ «Союз» совершил всего около сотни полетов. А пардон, почему тогда не посчитать полеты «Прогресса»? Это ведь по сути тот же «Союз», но набитый грузами вместо людей. И он сделал около 80-ти полетов. Тупые советские инженеры просто решили, что нет смысла возить грузы на орбиту на пилотируемом корабле, а то бы и «Союз» ого-го сколько полетов имел. Будем им это ставить в упрек?

А вообще РН «Союз» отлетала около 800 раз уже. И все это будет летать и дальше, причем за Насовские денешки. Отличная точка в “успешной” программе STS .

Возражение: Да нормальный это агрегат, он просто для другого предназначался -для орбитальных бомбардировок .

Ответ: Да неужели? Это просто технический бред. Американцы конечно тупые, но не настолько же.

Ведь любая стратегическая ракета - это супер-пупер «орбитальный бомбардировщик», причем на порядок лучше «Шаттла».

Она ведь из космоса (sic!) точно так же цели бомбит, она дешевле его в тысячи раз, она может уничтожить любую цель за 30-40 минут с момента отдачи команды, а «Шаттл» хорошо если всего пару раз в сутки над нужным местом пролетит (и то, если повезет с орбитой) .То есть на практике никакого выигрыша в подлетном времени он обеспечить не может. Он ведь не может барражировать где надо, как бомбардировщик, ему нужно постоянно крутиться вокруг Земли, иначе упадет:). Кроме того, он может летать от силы месяц-другой в год. Представьте, если бы ракеты были боеготовы только месяц в году, а все остальное время находились на обслуживании. Так что в любом случае из «Шаттла» носитель ядерного оружия - как из говна пуля.

Возражение: На самом деле просто не нашлось полезных нагрузок для него, обсчитались американцы. Их космические аппараты оказались намного легче и долговечнее, чем рассчитывали, вот и «Шаттл» потерял смысл. Ведь он окупался только при частых полетах, а запускать так часто было просто нечего.

Ответ:Угу. Им было так «нечего» запускать, что в первые годы полетов, в начале 80-х на выведение грузов « Шаттлом» стояла очередь из десятков (если не сотен) заказчиков.Эта очередь была расписана на несколько лет вперед, но «Шаттл» банально НЕ МОГ ЧАСТО ЛЕТАТЬ, как требовалось. Чисто технически. Впрочем, эта очередь рассосалась в итоге. После катастрофы «Челенджера» все всё наконец поняли и перенесли запуски на другие носители. И НАСА осталось только в оправдание распускать дурацкие выдумки про «слишком хорошие спутники».

Шаттл «Дискавери» на стартовом столе

«Спейс шаттл» или просто «Шаттл» (Space Shuttle - «космический челнок») - американский многоразовый транспортный космический корабль. «Шаттлы» использовались в рамках осуществляемой НАСА государственной программы «Космическая транспортная система» (Space Transportation System, STS ). Подразумевалось, что шаттлы будут «сновать, как челноки» между околоземной и , доставляя полезные грузы в обоих направлениях.

Программа по созданию космических челноков разрабатывалась компанией North American Rockwell и группой ассоциированных подрядчиков по поручению НАСА с 1971 года. Разработка и опытно-конструкторские работы велись в рамках совместной программы НАСА и ВВС. При создании системы использовался ряд технических решений для лунных модулей 1960-х годов: эксперименты с твердотопливными ускорителями, системами их отделения и получения топлива из внешнего бака. Всего было построено пять шаттлов (два из них погибли в катастрофах) и один прототип. Полеты в космос осуществлялись с 12 апреля 1981 года по 21 июля 2011 года.

В 1985 году НАСА планировало, что к 1990 году будет совершаться по 24 старта в год, и каждый из кораблей совершит до 100 полётов в космос. На практике же они использовались значительно меньше - за 30 лет эксплуатации было произведено 135 пусков (в том числе две катастрофы). Больше всего полётов (39) совершил космический челнок .

Общее описание системы

Шаттл запускается в космос при помощи двух твердотопливных ракетных ускорителей и трёх собственных маршевых двигателей, которые получают топливо из огромного внешнего подвесного бака, на начальном участке траектории основную тягу создают отделяемые твердотопливные ускорители. На орбите шаттл осуществляет манёвры за счёт двигателей системы орбитального маневрирования, возвращаясь на Землю как планёр.

Данная многоразовая система состоит из трёх основных компонентов (ступеней):

  1. Двух твердотопливных ракетных ускорителей, которые работают в течение примерно двух минут после запуска, разгоняя и направляя корабль, а затем отделяются на высоте около 45 км, приводняются на парашютах в океан и, после ремонта и перезаправки, используются вновь;
  2. Большого внешнего топливного бака с жидкими водородом и кислородом для главных двигателей. Бак также служит каркасом для скрепления ускорителей с космическим кораблём. Бак отбрасывается примерно через 8,5 минут на высоте 113 км, бо́льшая его часть сгорает в , а остатки падают в океан.
  3. Пилотируемого космического корабля-ракетоплана - (the Orbiter Vehicle или просто the Orbiter ) - собственно «спейс шаттла» (космического челнока), который выходит на околоземную орбиту, служит там платформой для исследований и домом для экипажа. После выполнения программы полёта возвращается на Землю и совершает посадку как планёр на взлётно-посадочную полосу.

В НАСА космические челноки имеют обозначение OV-ххх (Orbiter Vehicle - ххх )

Экипаж

Наименьший экипаж шаттла состоит из двух астронавтов - командира и пилота («Колумбия», запуски STS-1, STS-2, STS-3, STS-4). Наибольший экипаж шаттла - восемь астронавтов («Челленджер», STS-61A, 1985 год). Второй раз 8 астронавтов было на борту при посадке «Атлантиса» STS-71 в 1995 году. Чаще всего в экипаж входят от пяти до семи астронавтов. Беспилотных запусков не было.

Орбиты

Орбита шаттлов располагалась на высоте приблизительно в пределах от 185 до 643 км (115-400 миль).

Доставляемая в космос полезная нагрузка орбитальной ступени (орбитального ракетоплана) для зависит, в первую очередь, от параметров целевой орбиты, на которую выводится челнок. Максимальная масса полезной нагрузки может быть доставлена в космос при запуске на низкую околоземную орбиту с наклонением порядка 28° (широта ) и составляет 24,4 тонны. При запуске на орбиты с наклонением бо́льшим, чем 28°, допустимая масса полезной нагрузки соответственно уменьшается (так, при запуске на полярную орбиту расчетная грузоподъёмность челнока падает до 12 т; в реальности, однако, челноки никогда не запускались на полярную орбиту).

Максимальная масса загруженного космического корабля на орбите - 120-130 т. С 1981 года с помощью шаттлов было доставлено на орбиту более 1370 т полезных грузов.

Максимальная масса груза, возвращаемого с орбиты - до 14,4 т.

Длительность полёта

Шаттл рассчитан на двухнедельное пребывание на орбите. Обычно полёты шаттлов продолжались от 5 до 16 суток.

История создания

История проекта «Космическая транспортная система» начинается в 1967 году, когда ещё до первого пилотируемого полёта по программе «Аполлон» (11 октября 1968 года - старт «Аполлон-7») оставалось больше года, как обзор перспектив пилотируемой космонавтики после завершения лунной программы NASA.

30 октября 1968 года два головных центра NASA (Центр пилотируемых космических кораблей - MSC - в Хьюстоне и Космический центр имени Маршалла - MSFC - в Хантсвилле) обратились к американским космическим компаниям с предложением исследовать возможность создания многоразовой космической системы, что должно было снизить затраты космического агентства при условии интенсивного использования.

В сентябре 1970 года Целевая космическая группа под руководством вице-президента США С. Агню, специально созданная для определения следующих шагов в освоении космического пространства, оформила два детально проработанных проекта вероятных программ.

Большой проект включал:

  • космические челноки;
  • орбитальные буксиры;
  • большую на Земной орбите (до 50 человек экипажа);
  • малую орбитальную станцию на орбите ;
  • создание обитаемой базы на Луне;
  • пилотируемые экспедиции к ;
  • высадку людей на поверхность Марса.

В качестве малого проекта предлагалось создать только большую орбитальную станцию на Земной орбите. Но в обоих проектах было определено, что орбитальные полёты: снабжение станции, доставку на орбиту грузов для дальних экспедиций или блоки кораблей для дальних полётов, смена экипажей и прочие задания на орбите Земли, должны осуществляться многоразовой системой, которая и получила тогда название Space Shuttle.

Командованием ВВС США были заключены контракты на проведение НИОКР и испытаний. Системное проектирование и системная интеграция были возложены на исследовательскую корпорацию Aerospace Corp. Кроме того, к работе над шаттлом подключились следующие коммерческие структуры: за разработку второй ступени отвечали General Dynamics Corp., McDonnell-Douglas Aircraft Corp., за разработку шаттла, организацию и проведение полётов - North American Rockwell Corp., TRW, Inc., полезной нагрузки - McDonnell-Douglas Aircraft Corp., TRW, Inc., Aerospace Corp. Курированием проекта от государственных структур занимался Космический центр им. Кеннеди.

В изготовлении узлов и агрегатов шаттла (Space Shuttle Orbiter ) на конкурсной основе, пройдя отбор среди множества конкурентов, были задействованы следующие коммерческие структуры (о заключении контрактов было объявлено 29 марта 1973):

  • Космический аппарат в целом - North American Rockwell Corp., Space Division, Дауни, Калифорния (при 10 тысячах субподрядчиков в США);
  • Фюзеляж - General Dynamics Corp., Convair Aerospace Division, Сан-Диего, Калифорния;
  • Крыло - Grumman Corp., Бетпейдж, Лонг-Айленд;
  • Вертикальный стабилизатор - Fairchild Industries, Inc., Fairchild Republic Division, Фармингдейл, Лонг-Айленд;
  • Система орбитального маневрирования - McDonnell Douglas Astronautics Co., Eastern Division, Сент-Луис, Миссури;
  • Маршевый двигатель - North American Rockwell Corp., Rocketdyne Division, Мак-Грегор, Техас (при 24 субподрядчиках с суммами контрактов превышающими $100 тыс.).

Расчётный объём работы над шаттлом превысил 750 тыс. человеко-лет работ, что создавало на период работы над ним с 1974 по 1980 год 90 тыс. рабочих местнапрямую занятых в создании шаттла с перспективой доведения показателя трудоустройства до 126 тыс. при пиковой загрузке, плюс 75 тыс. рабочих мест на второстепенных направлениях деятельности, опосредованно связанных с проектом шаттла. Итого, на указанный период создавалось более 200 тыс. рабочих мест и предполагалось израсходовать около $7,5 млрд. бюджетных средств на оплату труда занятых работников всех специальностей.

Также существовали планы создания «атомного шаттла» - челнока с ядерной двигательной установкой NERVA, которая разрабатывалась и испытывалась в 1960-х годах. Атомный шаттл должен был осуществлять полёты между земной орбитой и орбитами Луны и Марса. Снабжение атомного челнока рабочим телом (жидкий водород) для ядерного двигателя возлагалось на обыкновенные шаттлы:

Nuclear Shuttle: This reusable rocket would rely on the NERVA nuclear engine. It would operate between low earth orbit, lunar orbit, and geosynchronous orbit, with its exceptionally high performance enabling it to carry heavy payloads and to do considerable amounts of work with limited stores of liquid-hydrogen propellant. In turn, the nuclear shuttle would receive this propellant from the Space Shuttle.

SP-4221 The Space Shuttle Decision

Однако президент США Ричард Никсон отверг все варианты, потому что даже самый дешёвый требовал 5 млрд долл. в год. NASA оказалось перед тяжёлым выбором: нужно было или начать новую крупную разработку, или объявить о прекращении пилотируемой программы.

Было решено настаивать на создании шаттла, но подать его не как транспортный корабль для сборки и обслуживания космической станции (держа, однако, это про запас), а как систему, способную приносить прибыль и окупить инвестиции за счёт выведения на орбиту спутников на коммерческой основе. Экономическая экспертиза подтвердила: теоретически при условии не менее 30 полётов в год и полном отказе от использования одноразовых носителей «Космическая транспортная система» может быть рентабельной.

Проект создания шаттлов был принят Конгрессом США.

Одновременно, в связи с отказом от одноразовых , определялось, что на шаттлы возлагается обязанность осуществлять вывод на земную орбиту и всех перспективных аппаратов Минобороны, ЦРУ и АНБ США.

Военные предъявили свои требования к системе:

  • Космическая система должна была способна выводить на орбиту полезный груз до 30 тонн, возвращать на Землю полезную нагрузку до 14,5 т, иметь размер грузового отсека не менее 18 м длиной и 4,5 м в диаметре. Это были размер и вес проектировавшегося тогда оптической разведки KH-11 KENNAN, который сопоставим по размерам с .
  • Обеспечить возможность бокового манёвра для орбитального корабля до 2000 км для удобства посадки на ограниченное количество военных аэродромов.
  • Для запуска на околополярные орбиты (с наклонением 56-104°) ВВС решили построить собственный технический, стартовый и посадочный комплексы на авиабазе в Калифорнии.

Этим требования военного ведомства к проекту были ограничены.

Использовать челноки в качестве «космических бомбардировщиков» не планировалось никогда. Во всяком случае, не существует никаких открытых документов NASA, Пентагона, или Конгресса США, свидетельствующих о таких намерениях. Не упоминаются «бомбардировочные» мотивы ни в мемуарах, ни в частной переписке участников создания шаттлов.

Проект космического бомбардировщика «X-20 Dyna Soar» официально стартовал 24 октября 1957 года. Однако с развитием МБР шахтного базирования и атомного подводного флота, вооружённого баллистическими ракетами, создание орбитальных бомбардировщиков в США было признано нецелесообразным. Уже после 1961 годаиз проекта «X-20 Dyna Soar» исчезают упоминания о «бомбардировочных» задачах, но остаются разведывательные и «инспекционные». 23 февраля 1962 года министр обороны Р. Макнамара одобрил последнюю реструктуризацию программы. С этого момента «Dyna-Soar» официально называлась научно-исследовательской программой, имеющей целью исследовать и показать возможность выполнения пилотируемым орбитальным планёром маневрирования при входе в атмосферу и посадки на взлётно-посадочную полосу в заданном месте Земли с необходимой точностью.

К середине 1963 года министерство обороны серьёзно сомневалось относительно необходимости программы «Dyna-Soar».

При принятии этого решения было учтено, что космические аппараты такого класса не могут «висеть» на орбите достаточно продолжительное время, чтобы считать их «орбитальными платформами», а запуск каждого корабля на орбиту занимает даже не часы, а сутки и требует применения ракет-носителей тяжёлого класса, что не позволяет их использовать ни для первого, ни для ответного ядерного удара.

Многие технические и технологические наработки программы «Dyna-Soar» были впоследствии использованы при создании шаттлов.

Первоначально, в 1972 году, планировалось что шаттл станет основным средством доставки в космос, но в 1984 году ВВС США доказали что им необходимы дополнительные, резервные, средства доставки. В 1986 году, после катастрофы шаттла «Челленджер», была пересмотрена политика использования шаттла: шаттлы должны использоваться для миссий требующих взаимодействие с экипажем; так же коммерческие аппараты не могут запускаться на шаттле, за исключением аппаратов разработанных для запуска шаттлом или требующих взаимодействия с экипажем, или по соображениям внешней политики.

Реакция СССР

Советское руководство внимательно наблюдало за развитием программы «Космическая транспортная система», но, предполагая худшее, искало скрытую военную угрозу. Таким образом, было сформировано два основных предположения:

  • Возможно использование космических челноков в качестве орбитальных бомбардировщиков-носителей ядерного оружия;
  • Возможно использование космических челноков для похищения с орбиты Земли советских спутников, а также ДОС (долговременных обитаемых станций) «Салют» и ОПС (орбитальных пилотируемых станций) «Алмаз» ОКБ-52 Челомея. Для защиты, на первом этапе, советские ОПС оснащались модифицированной автоматической пушкой НР-23 конструкции Нудельмана - Рихтера (система «Щит-1»), которую позднее должна была сменить система «Щит-2», состоящая из двух ракет класса «космос-космос». Предположение о «похищениях» основывалось исключительно на габаритах грузового отсека и возвращаемой полезной нагрузке, открыто объявленным американскими разработчиками шаттлов, близким к габаритам и массе «Алмазов». О габаритах и весе разрабатывавшегося в то же время спутника оптической разведки KH-11 KENNAN в советском руководстве информации не было.

В результате советская космическая отрасль получила задание создать многоразовую многоцелевую космическую систему с характеристиками, аналогичными шаттлу - «Буран».

Конструкция

Технические данные

Твердотопливный ускоритель

Внешний топливный бак

Шаттл Атлантис

Бак содержит горючее (водород) и окислитель (кислород) для трёх жидкостных ракетных двигателей (ЖРД) SSME (RS-25) на орбитальном аппарате и не снабжён собственными двигателями.

Внутри топливный бак разделён на три секции. Верхнюю треть бака занимает ёмкость, предназначенная для охлаждённого до температуры −183 °C (−298 °F) жидкого кислорода. Объём этой ёмкости составляет 650 тыс. литров (143 тыс. галлонов). Нижние две трети бака предназначены для охлаждённого до температуры −253 °C (−423 °F) жидкого водорода. Объём этой ёмкости составляет 1,752 млн литров (385 тыс. галлонов). Между ёмкостями для кислорода и водорода находится кольцевидный промежуточный отсек, который соединяет топливные секции, несёт в себе оборудование, и к которому крепятся верхние концы ракетных ускорителей.

Начиная с 1998 года баки изготавливались из алюминиево-литиевого сплава. Поверхность топливного бака покрыта термозащитной оболочкой из напылённой пены полиизоцианурата толщиной в 2,5 см. Задачи этой оболочки - защитить горючее и окислитель от перегрева и предотвратить образование льда на поверхности бака. В месте крепления ракетных ускорителей во избежание образования льда установлены дополнительные нагреватели. Для защиты водорода и кислорода от перегрева внутри бака также имеется система кондиционирования. Особая электрическая система встроена в бак для защиты от молний. За регулировку давления в топливных ёмкостях и за поддержание безопасных условий в промежуточном отсеке отвечает система клапанов. В баке находится множество датчиков, сообщающих о состоянии систем. Топливо и окислитель из бака подаются к трём маршевым ЖРД орбитального ракетоплана (орбитера) по магистралям питания диаметром 43 см каждая, которые затем разветвляются внутри ракетоплана и подводят реагенты к каждому двигателю. Баки изготавливались компанией «Lockheed Martin».

Орбитер (орбитальный ракетоплан)

Размеры орбитального корабля по сравнению с «Союзом»

Орбитальный ракетоплан оснащён тремя собственными (бортовыми) разгонными маршевыми двигателями RS-25 (SSME), начинавшими работу за 6,6 секунд до момента старта (отрыва от стартового стола), и выключавшимися незадолго до отделения внешнего топливного бака. Далее, на участке довыведения (в качестве доразгонных двигателей), а также для маневрирования на орбите и схода с неё использовались два двигателя системы орбитального маневрирования (Orbital Maneuvering System, OMS ), каждый тягой 27 кН. Горючее и окислитель для OMS хранились на шаттле, использовались для орбитальных манёвров и при торможении космического челнока перед сходом с орбиты. Кроме того, OMS включает задний ряд двигателей реактивной системы управления (Reaction Control System, RCS ), предназначенных для ориентации космического корабля на орбите, расположенных в его хвостовых мотогондолах. В носовой части ракетоплана располагается передний ряд двигателей RCS .

При посадке используется, для гашения горизонтальной скорости, тормозной парашют, и, в дополнение к нему, - аэродинамический тормоз (разделяющийся руль направления).

Внутри ракетоплан разделён на отсек экипажа, находящийся в передней части фюзеляжа, большой грузовой отсек и хвостовой двигательный отсек. Отсек экипажа двухпалубный, рассчитан в норме на 7 астронавтов, хотя был запуск STS-61A с 8 астронавтами, при спасательной операции может принять ещё троих, доводя экипаж до 11 человек. Его объём составляет 65,8 м 3 , имеет 11 окон и иллюминаторов. В отличие от грузового отсека, в отсеке экипажа поддерживается постоянное давление. Отсек экипажа разделён на три подотсека: полётную палубу (кабину управления), салон и переходный воздушный шлюз. Кресло командира экипажа находится в кабине слева, кресло пилота - справа, органы управления полностью продублированы, так что и капитан, и пилот может управлять в одиночку. В кабине в общей сложности отображается более двух тысяч показаний приборов. Астронавты живут в салоне, там находится стол, спальные места, там же хранится дополнительное оборудование и находится станция оператора экспериментов. В воздушном шлюзе находятся скафандры для двух астронавтов и инструменты для работы в открытом космосе.

В грузовом отсеке располагаются доставляемые на орбиту грузы. Наиболее известной деталью грузового отсека является Система удалённого манипулирования (англ. Remote Manipulator System , сокр. RMS ) - механическая рука длиной 15,2 м, управляемая из кабины ракетоплана. Механическая рука применяется для фиксирования и манипуляций с грузами в грузовом отсеке. Створки люка грузового отсека имеют встроенные радиаторы и используются для отвода тепла.

Профиль полёта

Запуск и выведение на орбиту

Старт системы выполняется вертикально, на полной тяге маршевых двигателей шаттла (SSME) и двух твердотопливных ускорителей, при этом последние создают около 80 % стартовой тяги системы. Зажигание трёх маршевых двигателей происходит за 6,6 секунд до назначенного времени старта (Т), двигатели включаются последовательно, с интервалом 120 миллисекунд. В течение трёх секунд двигатели выходят на стартовую мощность (100 %) тяги. Точно в момент старта (Т=0) производится одновременное зажигание боковых ускорителей и подрыв восьми пироболтов, обеспечивающих крепление системы к стартовому комплексу. Начинается подъём системы. Непосредственно после отхода от стартового комплекса начинается разворот системы по тангажу, вращению и рысканию для выхода на азимутцелевого наклонения орбиты. В ходе дальнейшего подъёма с постепенным уменьшением тангажа (траектория отклоняется от вертикали к горизонту, в конфигурации «спиной вниз») выполняется несколько кратковременных дросселирований маршевых двигателей с целью снижения динамических нагрузок на конструкцию. Так, на участке максимального аэродинамического сопротивления (Max Q) мощность маршевых двигателей дросселируется до 72 %. Перегрузки на этапе выведения системы на орбиту составляют до 3g.

Приблизительно через две минуты (126 секунд) после подъёма, на высоте 45 км, боковые ускорители отделяются от системы. Дальнейший подъём и разгон системы осуществляется маршевыми двигателями шаттла (SSME), питающимися из внешнего топливного бака. Их работа прекращается по достижении кораблём скорости 7,8 км/с на высоте несколько более 105 км ещё до полной выработки топлива; через 30 секунд после отключения двигателей (примерно через 8,5 минут после старта) на высоте около 113 км производится отделение внешнего топливного бака.

Существенно, что на данном этапе скорость орбитального корабля ещё недостаточна для выхода на устойчивую низкую круговую орбиту (по сути, челнок выходит на баллистическую траекторию) и требуется дополнительный разгонный импульс до выведения на орбиту. Этот импульс выдаётся через 90 секунд после отделения бака - в момент, когда челнок, продолжая движение по баллистической траектории, достигает её апогея; необходимый доразгон производится кратковременным включением двигателей системы орбитального маневрирования. В некоторых полётах для этой цели использовалось два последовательных включения двигателей на разгон (один импульс увеличивал высоту апогея, другой формировал круговую орбиту).

Такое решение профиля полёта позволяет избежать выведения топливного бака на ту же орбиту, что и челнок; продолжая снижение по баллистической траектории, бак падает в заданную точку Индийского океана. В случае, если импульс довыведения не удастся осуществить, челнок всё же может совершить одновитковый полёт по очень низкой орбите и вернуться на космодром.

На любом этапе выведения на орбиту предусмотрена возможность аварийного прекращения полёта с использованием соответствующих процедур.

Непосредственно после формирования низкой опорной орбиты (круговой орбиты с высотой порядка 250 км, хотя значение параметров орбиты зависело от конкретного полёта) производится сброс остатков топлива из системы маршевых двигателей SSME и вакуумирование их топливных магистралей. Кораблю придаётся необходимая осевая ориентация. Раскрываются створки грузового отсека, которые служат также и радиаторами системы терморегуляции корабля. Системы корабля приводятся в конфигурацию орбитального полёта.

Посадка

Посадка состоит из нескольких этапов. Вначале производится выдача тормозного импульса на сход с орбиты - приблизительно за половину витка до места посадки, при этом шаттл летит кормой вперёд в перевернутом положении. Продолжительность работы двигателей орбитального маневрирования составляет около 3 минут; характеристическая скорость, отнимаемая от орбитальной скорости шаттла - 322 км/ч; такого торможения достаточно для того, чтобы перигей орбиты оказался в пределах атмосферы. Затем челнок выполняет разворот по тангажу, принимая необходимую ориентацию для входа в атмосферу. Корабль входит в атмосферу с большим углом атаки (порядка 40°). Сохраняя данный угол тангажа, корабль выполняет несколько S-образных манёвров с креном до 70°, эффективно гася скорость в верхних слоях атмосферы (это также позволяет минимизировать подъёмную силу крыла, нежелательную на данном этапе). Температура отдельных участков теплозащиты корабля на этом этапе превышает 1500°. Максимальная перегрузка, испытываемая астронавтами на этапе атмосферного торможения - около 1,5 g.

После гашения основной части орбитальной скорости корабль продолжает снижаться как тяжёлый планёр с невысоким аэродинамическим качеством, постепенно уменьшая тангаж. Выполняется манёвр захода на посадочную полосу. Вертикальная скорость корабля на этапе снижения весьма высока - порядка 50 м/с. Угол посадочной глиссады также велик - порядка 17-19°. На высоте порядка 500 м и скорости около 430 км/ч начинается выравнивание корабля и производится выпуск шасси. Касание полосы происходит на скорости порядка 350 км/ч, после чего выпускается тормозной парашют диаметром 12 м; после торможения до скорости 110 км/ч парашют сбрасывается. Экипаж выходит из корабля через 30-40 минут после остановки.

История применения

  • «Энтерпрайз» (OV-101) - использовался для отработки наземных и атмосферных испытаний, а также подготовительных работ на стартовых площадках; никогда не летал в космос. Его начали строить в 1974 году, в 1977 году началась его опытная эксплуатация. В самом начале предполагалось назвать этот орбитальный корабль «Конституция» (Constitution ) в честь двухсотлетия американской Конституции, но многочисленным предложениям зрителей популярного телевизионного сериала «Звёздный путь», было выбрано имя «Энтерпрайз».
  • Первый космический челнок - «Колумбия» (OV-102) стал первым действующим многоразовым орбитальным аппаратом . Его начали строить в марте 1975 года, и уже в марте 1979 года передали . Шаттл был назван по имени парусника, на котором капитан Роберт Грей в мае 1792 года исследовал внутренние воды Британской Колумбии (ныне штаты США Вашингтон и Орегон). До первого запуска этого шаттла в 1981 году НАСА не выводило астронавтов на орбиту уже 6 лет.
    Шаттл «Колумбия» погиб 1 февраля 2003 года (полёт STS-107) при входе в атмосферу Земли перед посадкой. Это было 28-е космическое путешествие «Колумбии».
  • Второй космический челнок - «Челленджер» (OV-099) - был передан НАСА в июле 1982 года. Он был назван по имени морского судна, исследовавшего океан в 1870-е годы. При девятом запуске он нёс рекордный экипаж - 8 человек.
    «Челленджер» погиб при своём десятом запуске 28 января 1986 года (полёт STS-51L).
  • Третий шаттл - «Дискавери» (OV-103) - был передан НАСА в ноябре 1982 года. Совершил 39 полетов. «Дискавери» был назван по имени одного из двух судов, на которых, в 1770-х годах, британский капитан Джеймс Кук открыл Гавайские острова и исследовал побережье Аляски и северо-западной Канады. Такое же имя («Дискавери») носило одно из судов Генри Гудзона, который в 1610-1611 годах исследовал Гудзонов залив. Ещё два «Дискавери» были построены Британским Королевским Географическим Обществом для исследования Северного полюса и Антарктики в 1875 и 1901 годах.
  • Четвёртый шаттл - «Атлантис» (OV-104) - вступил в строй в апреле 1985 года. Совершил 33 полета, в том числе в 2011 году совершил 135-й последний полёт по программе «Шаттл». В этом полёте экипаж был сокращён до четырёх человек на случай аварии, поскольку в этом случае эвакуировать экипаж с МКС пришлось бы российскими .
  • Пятый шаттл - «Индевор» (OV-105) - был построен взамен погибшего «Челленджера» и принят в эксплуатацию в мае 1991 года. Совершил 25 полетов. Шаттл «Индевор» был назван также по имени одного из кораблей Джеймса Кука. Этот корабль также использовался в астрономических наблюдениях, которые позволили точнее установить расстояние от Земли до .
  • Патфайндер (OV-098) - массогабаритный макет челнока, созданный для отработки процедур их транспортировки и технического обслуживания, чтобы этими испытаниями не занимать лётный прототип - «Энтерпрайз». Построен в 1977 году, в дальнейшем был переделан для придания большего сходства с лётными образцами и отправлен в Японию на выставку. После возвращения в США он выставлен в Ракетно-космическом центре в Хантсвилле (Алабама) вместе с внешним топливным баком и двумя твердотопливными ускорителями.
  • «Эксплорер» (OV-100) - ещё один полномасштабный макет челнока. Был построен в 1993 году в качестве музейного экспоната для демонстрационного комплекса Космического центра Кеннеди.

Обозначения номеров полётов

Каждый пилотируемый полёт по программе «Космическая транспортная система» имел своё обозначение, которое состояло из сокращения STS (Space Transportation System ) и порядкового номера полёта шаттла. Например, STS-4 означает четвёртый полёт по программе «Космическая транспортная система». Порядковые номера присваивались на стадии планирования для каждого полёта. Но в ходе подготовки многие полёты откладывались или переносились на другие сроки. Часто случалось так, что полёт, запланированный на более поздний срок и имеющий больший порядковый номер, оказывался готовым к полёту раньше, чем другой полёт, запланированный на более ранний срок. Раз присвоенные порядковые номера не изменялись, то и полёты с бо́льшим порядковым номером часто осуществлялись раньше, чем полёты с меньшим номером.

С 1984 года была введена новая система обозначений. Сокращение STS осталось, но порядковый номер был заменён кодовой комбинацией, которая состояла из двух цифр и одной буквы. Первая цифра в этой кодовой комбинации соответствовала последней цифре текущего года, но не календарного, а бюджетного года НАСА, который продолжался с октября по сентябрь. Например, если полёт происходит в 1984 году до октября, то берётся цифра 4, если в октябре и позже - цифра 5. Второй цифрой в кодовой комбинации всегда была 1. Обозначение 1 было принято для запусков шаттлов с мыса Канаверал. Ранее планировалось, что шаттлы будут также стартовать с военно-воздушной базы Ванденберг в Калифорнии; для этих стартов планировалась цифра 2. Но катастрофа «Челленджера» (STS-51L) прервала эти планы. Буква в кодовой комбинации соответствовала порядковому номера полёта шаттла в текущем году. Но и этот порядок не соблюдался, так, например, полёт STS-51D состоялся раньше, чем полёт STS-51B.

Пример: полёт STS-51A - состоялся в ноябре 1984 года (цифра 5), это был первый полёт в новом бюджетном году (буква А), шаттл стартовал с мыса Канаверал (цифра 1).

После катастрофы «Челленджера» произошедшей в январе 1986 года и отмены запусков с базы Ванденберг НАСА вернулось к старой системе обозначения.

Список полётов по программе «Спейс Шаттл»

Список полётов Spacelab и Spacehab
Миссия Орбитер Лаборатория Направление исследований
STS-9 Columbia Spacelab-1 общенаучные
51-B (STS-24) Challenger Spacelab-3
51-F (STS-26) Challenger Spacelab-2 физика солнца
61-A (STS-30) Challenger Spacelab-D1 микрогравитационные и биологические
STS-35 Columbia ASTRO-1 астрономические
STS-40 Columbia Spacelab SLS-01 космическая биология и медицина
STS-42 Discovery Spacelab IML-01 микрогравитационные
STS-45 Atlantis ATLAS-1 атмосферные
STS-50 Columbia USML-1 микрогравитационные
STS-47 Endeavour Spacelab-J1 микрогравитационные и биологические
STS-56 Discovery ATLAS-2 атмосферные
STS-55 Columbia Spacelab-D2 микрогравитационные
STS-57 Endeavour Spacehab-1
STS-58 Columbia Spacelab SLS-02 биологические
STS-60 Discovery Spacehab-2 материаловедческие
STS-65 Columbia Spacelab IML-02 микрогравитационные
STS-66 Atlantis ATLAS-3 атмосферные
STS-63 Discovery Spacehab-3 материаловедческие и биологические
STS-67 Discovery ASTRO-2 астрономические
STS-71 Atlantis Spceelab-Мир биологические
STS-73 Columbia USML-2 микрогравитационные
STS-77 Endeavour Spacehab-4 материаловедческие и биологические
STS-78 Columbia LMS-1 биологические и микрогравитационные
STS-83 Columbia MSL-1 материаловедческие
STS-94 Columbia MSL-1R материаловедческие
STS-90 Columbia Neurolab нейробиологические
STS-95 Discovery Spacehab-5 биологические
Список полётов по программе «Шаттл-Мир» и МКС
Миссия Орбитер Станция Полётное и научное задание
STS-71 Atlantis Шаттл-Мир 1-я стыковка
STS-74 Atlantis Шаттл-Мир 2-я стыковка
STS-76 Atlantis Шаттл-Мир 3-я стыковка
STS-79 Atlantis Шаттл-Мир 4-я стыковка
STS-81 Atlantis Шаттл-Мир 5-я стыковка
STS 84 Atlantis Шаттл-Мир 6-я стыковка
STS-86 Atlantis Шаттл-Мир 7-я стыковка
STS-89 Endeavour Шаттл-Мир 8-я стыковка
STS-91 Discovery Шаттл-Мир 9-я стыковка
STS-88 Endeavour МКС 1-й полёт по программе сборки
совместные микрогравитационные и биологические исследования
STS-96 Discovery МКС 2-й полёт по программе сборки
совместные атмосферные исследования
STS-101 Atlantis МКС 3-й полёт по программе сборки
STS-102 Atlantis МКС 4-й полёт по программе сборки
совместные микрогравитационные исследования

Катастрофы

Гибель «Челленджера»

За все время эксплуатации шаттлов было всего две аварии, в которых погибло в общей сложности 14 астронавтов:

  • 28 января 1986 года - катастрофа шаттла «Челленджер» в миссии STS-51L. Космический челнок в самом начале миссии разрушился в результате взрыва внешнего топливного бака на 73-й секунде полёта. Разрушение летательного аппарата было вызвано повреждением уплотнительного кольца правого твердотопливного ускорителя при старте. Вопреки распространенному заблуждению, «шаттл» не взорвался, а разрушился в результате действия нештатных аэродинамических перегрузок. Погибли все 7 членов экипажа. После катастрофы программа «шаттлов» была свёрнута на 32 месяца.
  • 1 февраля 2003 года - катастрофа шаттла «Колумбия» в миссии STS-107. Авария произошла во время возвращения шаттла из-за разрушения наружного теплозащитного слоя, вызванным падением на него куска теплоизоляции кислородного бака при старте корабля. Погибли все 7 членов экипажа.

Выполненные задачи

Шаттлы использовались для вывода грузов на орбиты высотой 200-500 км, проведения научных исследований, обслуживания орбитальных космических аппаратов (монтажные и ремонтные работы).

Шаттлом «Дискавери» в апреле 1990 года был доставлен на орбиту телескоп «Хаббл» (полёт STS-31). На шаттлах «Колумбия», «Дискавери», «Индевор» и «Атлантис» были осуществлены четыре экспедиции по обслуживанию телескопа «Хаббл». Последняя экспедиция шаттла к «Хабблу» состоялась в мае 2009 года. Так как с 2011 года полёты шаттлов были прекращены, это была последняя экспедиция человека к телескопу, и на текущий момент (август 2013) эти работы невозможно выполнить какими-либо другими имеющимися космическими аппаратами.

Шаттл «Индевор» с открытым грузовым отсеком

В 1990-е годы шаттлы принимали участие в совместной российско-американской программе «Мир - Шаттл». Было осуществлено девять стыковок со .

В течение всех тридцати лет, когда шаттлы были в эксплуатации, они постоянно развивались и модифицировались. За всё время эксплуатации было произведено более тысячи модификаций к изначальному проекту шаттла.

Шаттлы играли важную роль в осуществлении проекта по созданию (МКС). Так, например, некоторые модули МКС, в том числе российский модуль «Рассвет» (был доставлен шаттлом «Атлантис»), не имеют своих двигательных установок (ДУ) в отличие от российских «Заря», «Звезда», и модулей «Пирс», «Поиск» которые стыковались в составе грузового корабля-модуля «Прогресс М-СО1», а значит, не могут самостоятельно маневрировать на орбите для поиска, сближения и стыковки со станцией. Поэтому их нельзя просто «забрасывать» на орбиту ракетой-носителем типа «Протон». Существует несколько способов собирать станции из таких модулей - в составе грузового корабля, доставка в грузовом отсеке шаттла или, гипотетически, использовать орбитальные «буксиры», которые смогли бы подхватывать модуль, выведенный на орбиту ракетой-носителем, стыковаться с ним и подводить его к станции для стыковки.

Стоимость

В 2006 году общие расходы составили 160 млрд долл. США, к этому времени было выполнено 115 запусков. Средние расходы на каждый полёт составили 1,3 млрд долл. США, но основная часть расходов (проектирование, модернизация и др.) не зависит от числа запусков.

Несмотря на то, что стоимость каждого полёта шаттла составляла около 450 млн долл., на обеспечение 22 полётов шаттлов с середины 2005 года по 2010 год в бюджете NASA было заложено около 1 млрд 300 млн долл. прямых затрат.

За эти деньги орбитальный аппарат шаттла мог доставлять за один рейс к МКС 20-25 тонн груза, включая модули МКС, и плюс к этому 7-8 астронавтов.

Завершение программы «Космическая транспортная система»

Программа «Космическая транспортная система» была завершена в 2011 году. Все действующие шаттлы были списаны после их последнего полёта.

В пятницу, 8 июля 2011 года был осуществлён последний старт «Атлантиса» с сокращённым до четырёх астронавтов экипажем. Это был последний полёт по программе «Космическая транспортная система». Он завершился рано утром 21 июля 2011 года.

Последние полёты шаттлов

Итоги

За 30 лет эксплуатации пять шаттлов совершили 135 полётов. В общей сложности все шаттлы совершили 21 152 витка вокруг Земли и пролетели 872,7 млн км (542 398 878 миль). На шаттлах в космос было поднято 1,6 тыс. тонн (3,5 млн фунтов) полезных грузов. Совершили полёты 355 астронавтов и космонавтов; в общем 852 членов экипажей шаттлов за всю эксплуатацию.

После завершения эксплуатации все шаттлы отправлены в музеи: никогда не летавший в космос шаттл «Энтерпрайз», ранее находившийся в музее Смитсоновского института в районе вашингтонского аэропорта Даллеса, перемещён в Морской и аэрокосмический музей в Нью-Йорке. Его место в Смитсоновском институте занял шаттл «Дискавери». Шаттл «Индевор» встал на вечную стоянку в Калифорнийском научном центре в Лос-Анджелесе, а шаттл «Атлантис» был выставлен в Космическом центре имени Кеннеди во Флориде.

  • Слово «шаттл» переводится как «челнок» и означает рабочий орган ткацкого станка, перемещающийся туда и обратно поперёк полотна ткани; другое общеупотребительное значение - транспортное средство, обслуживающее маршрут на короткое расстояние без промежуточных пунктов (челночный маршрут, экспресс).
  • Первый старт «шаттла» состоялся в двадцатилетнюю годовщину старта Гагарина - 12 апреля 1981 года. Это был первый в истории мировой космонавтики случай полёта корабля нового типа сразу с экипажем, без предварительных беспилотных запусков. Миф заключается в том, что первый старт был приурочен к годовщине. На самом деле первый старт планировался на 10 апреля, но за двадцать минут до старта была обнаружена потеря синхронизации при обмене данных между основным и резервным компьютерами шаттла (из-за ошибки в программном обеспечении). Старт был отменён за 16 минут до расчётного времени и был перенесён на двое суток
  • Экипаж Колумбия STS-1, состоявший из двух человек, получил Космические медали почёта, но командир Джон Янг - сразу после полёта, а второй пилот Роберт Криппен - в 2006 году, к 25-й годовщине. По состоянию на август 2012 это последнее (28-е) награждение этой медалью.
  • На шаттле «Челленджер» в 1983 году поднялся в космос первый экипаж из 5 человек, включая первую американскую астронавтку. Командир - Роберт Криппен.
  • На шаттле «Колумбия» в 1983 году поднялся в космос первый экипаж из 6 человек, включая первого на американском корабле иностранца. Командир - Джон Янг.
  • На шаттле «Челленджер» в 1984 году поднялся в космос первый экипаж из 7 человек, впервые включавший сразу двух женщин. В этом полёте в открытый космос впервые вышла американская астронавтка Кэтрин Салливан. Командир - Роберт Криппен.
  • В октябре 1985 года шаттл «Челленджер» совершил первый в истории космонавтики полёт с 8 членами экипажа. Впервые в экипаже было сразу трое иностранцев - два немца и голландец. Также это был первый полёт шаттла, финансируемый другой страной - ФРГ, и последний успешный полёт «Челленджера».
    • Второй раз 8 человек было на борту шаттла при посадке «Атлантиса» в июне 1995 года (STS-71).
  • Максимальное количество запусков было сделано за год до катастрофы шаттла «Челленджер», в 1985 году 9 полетов. На роковой 1986 год планировалось 15 полетов. В 1992 и 1997 году было произведено по 8 полетов.
  • Хотя для приземления шаттлов предназначено три полосы, только один раз, во время выполнения миссии «Колумбия» STS-3 была произведена посадка на полигоне Уайт Сэндс (White Sands ) в штате Нью-Мексико.


Человечество научилось строить очень мощные и высокоскоростные объекты, которые собираются десятилетиями, чтобы потом достигнуть самых отдаленных целей. «Шаттл» на орбите движется со скоростью более 27 тысяч км в час. Ряд космических зондов НАСА, такие как «Гелиос 1», «Гелиос 2» или «Воджер 1» достаточно мощны, чтобы достичь Луны за несколько часов.

Эта статья была переведена с англоязычного ресурса themysteriousworld.com и, конечно же, не совсем соответствует действительности. Многие российские и советские ракетоносители и космические аппараты преодолевали барьер в 11000 км/ч, но на западе, видимо, привыкли этого не замечать. Да и информации о наших космических объектах в свободном доступе довольно немного, во всяком случае о скорости многих российских аппаратов мы так и не смогли узнать.

Вот список из десяти самых быстрых объектов, произведенных человечеством:

✰ ✰ ✰
10

Ракетная тележка

Скорость: 10 385 км/ч

Ракетные тележки фактически используются для тестирования платформ, используемых для ускорения экспериментальных объектов. Во время испытаний тележка имеет рекордную скорость 10385 км/час. На этих устройствах вместо колес используются раздвижные колодки, чтобы можно было развить такую молниеносную скорость. Ракетные тележки приводятся в движение с помощью ракет.

Эта внешняя сила придает начальное ускорение экспериментальным объектам. У тележек также есть длинные, более 3 км, прямые участки пути. Танки ракетных тележек заполнены смазочными материалами, такими как газообразный гелий, так что это помогает экспериментальному объекту развить необходимую скорость. Эти устройства обычно используются для ускорения ракет, авиационных деталей и аварийно-спасательных секций воздушных судов.

✰ ✰ ✰
9

NASA X-43 A

Скорость: 11 200 км/ч

ASA X-43 А представляет собой беспилотный сверхзвуковой летательный аппарат, который запускается с большего самолета. В 2005 году, книга рекордов Гиннеса признала NASA X-43 А самым быстрым самолетом из когда-либо сделанных. Он развивает максимальную скорость 11 265 км/ч, это примерно в 8,4 раза быстрее, чем скорость звука.

NASA X-13 А использует технологию запуска при падении. Сначала этот сверхзвуковой самолет попадает на большую высоту на более крупном самолете, а затем падает. Необходимая скорость достигается с помощью ракеты-носителя. На заключительном этапе, после достижения заданной скорости NASA X-13 работает на своем собственном двигателе.

✰ ✰ ✰
8

Шаттл «Колумбия»

Скорость: 27 350 км/ч

Шаттл «Колумбия» был первым успешным многоразовым космическим кораблем за всю историю освоения космоса. С 1981 года он успешно выполнил 37 миссий. Рекордная скорость шаттла «Колумбия» — 27 350 км/ч. Корабль превысил свою нормальную скорость, когда упал 1 февраля 2003 года.

Обычно шаттл движется со скоростью 27 350 км/ч, чтобы оставаться на нижней орбите Земли. При такой скорости, экипаж космического корабля может увидеть восход и заход солнца несколько раз в течение одного дня.

✰ ✰ ✰
7

Шаттл «Дискавери»

Скорость: 28 000 км/ч

Шаттл «Дискавери» имеет рекордное число успешных миссий, больше, чем любой другой космический корабль. С 1984 года «Дискавери» осуществил 30 успешных рейсов, и его рекорд скорости — 28 000 км/ч. Это в пять раз быстрее, чем скорость пули. Иногда космические аппараты должны двигаться быстрее, чем их обычная скорость 27 350 км/ч. Все зависит от выбранной орбиты и высоты космического аппарата.

✰ ✰ ✰
6

Спускаемый аппарат «Аполлон 10»

Скорость: 39 897 км/ч

Запуск «Аполлон 10» был репетицией миссии НАСА перед прилунением. Во время обратного пути, 26 мая 1969 года аппарат «Аполлон 10» приобрел молниеносную скорость 39 897 км/ч. Книга рекордов Гиннеса зафиксировала рекорд скорости спускаемого аппарата «Аполлон 10» как максимальный рекорд скорости пилотируемого транспортного средства.

На самом деле, модулю «Аполлон 10» была нужна такая скорость, чтобы с лунной орбиты достигнуть атмосферы Земли. Свою миссию «Аполлон 10» также завершил миссию за 56 часов.