Популяционная генетика популяционная генетика это раздел генетики который. Глава III. Основы популяционной генетики

В процессе эволюции живых организмов ясно прослеживается тенденция к той или иной форме интеграции, которая проявляется, начиная с молекулярного уровня организации и заканчивается биосферным. Интеграция позволяет осуществлять разделение функций между отдельными элементами системы, что делает саму систему более лабильной, жизнеспособной и экономичной. Один из уровней интеграции, существующий между индивидуумом и видом, представлен популяцией.

Популяция — это группа особей одного вида, объединенных общим местом обитания. Она складывается под влиянием условий существования на основе взаимодействия трех факторов: наследственности, изменчивости и отбора. Особи внутри популяции обладают сходной системой приспособлений к условиям среды и из поколения в поколение воспроизводят основные адаптивные признаки.

Популяция является основной единицей эволюции. На эту роль популяция вышла благодаря следующим особенностям :

  1. Популяция — самовоспроизводящаяся система, способная к длительному существованию во времени и пространстве, в отличие от индивидуума, жизнь которого ограничена узкими временными рамками и который может не оставить потомства. В основе воспроизводства популяции лежит процесс размножения составляющих ее особей.
  2. Популяция является полномочным представителем вида, т.к. ее генофонд включает все основные гены видового уровня. В то же время в ней испытываются новые гены и их комбинации, за счет чего происходит обогащение видового генофонда.
  3. В популяции в результате скрещиваний осуществляется обмен генетической информацией между особями, который изменяет генотипическую структуру популяции, позволяя ей адекватно реагировать на разнообразные воздействия.

Основными характеристиками популяции являются: ее генофонд, численность, ареал и генотипическая структура. Все они динамичны, подвержены временным, иногда очень значительным, колебаниям. Динамические процессы, приводящие к изменению генетической структуры старых и формированию новых популяций, обозначают термином микроэволюция .

Исследования в области генетики популяций были начаты в первые годы ХХ в. Основателем этого направления считается датский генетик В. Иогансен, который разработал учение о популяциях и чистых линиях. Изучая наследование количественных признаков в популяциях фасоли, Иогансен пришел к выводу о неэффективности отбора в чистых линиях и эффективности его в популяциях, в основе чего лежит генетическая однородность первых и гетерогенность вторых. Открытие Иогансена, наряду с законами Менделя, способствовало созданию научных основ селекции.

Большинство популяций животных и растений складываются на основе свободного скрещивания особей — панмиксии . Это так называемые менделевские, или панмиктические, популяции раздельнополых животных и растений-перекрестников, в которых осуществляется постоянный обмен генетической информацией между ее членами. Иной тип популяций образуют организмы, которым свойственно самооплодотворение или вегетативное размножение. В этом случае обмен генами между особями либо полностью исключен, либо затруднен. Это так называемые закрытые популяции (растения-самоопылители, животные-гермафродиты), которые складываются как группы особей одного вида, имеющие общее происхождение, общий генофонд и общую систему адаптаций. И, наконец, промежуточный тип характерен для популяций растений, в которых самоопыление чередуется с перекрестным, а половое размножение с апомиксисом (факультативные апомикты) или вегетативным размножением. Такие популяции обычно характеризуются сложной генетической структурой.

Особое положение в живой природе занимают популяции человека. Действие биологических факторов, изменяющих генетическую структуру популяции, в первую очередь естественного отбора, изменено в результате деятельности самого человека. С помощью достижений науки, культуры, этики и медицины человек вносит существенные коррективы в процесс конструирования популяций, стремясь свести до минимума риск распространения “вредных” генов. Однако существование человеческих популяций подчиняется тем же законам, которые действуют в других популяциях.

Основной закон генетики популяций был сформулирован в 1908 г. математиком Дж.Г. Харди в Англии и врачом В. Вайнбергом в Германии, независимо друг от друга, на основе данных, относящихся к популяциям человека. Главный постулат этого закона сводится к тому, что частота гена не изменяется от поколения к поколению, а распределение генотипов в каждом поколении соответствует формуле бинома Ньютона, т.е. определяется возведением в квадрат суммы частот двух аллелей.

Рассмотрим процедуру выведения этого закона. Возьмем достаточно большую по численности менделевскую популяцию, в которой присутствуют два аллеля одного гена: А и а . В такой популяции будут встречаться три генотипа: АА , Аа и аа . Обозначим частоту доминантного аллеля через p , а рецессивного через q . В случае свободного комбинирования гамет А и а частота каждого из трех генотипов будет равна: AA = p · p = p 2 ; aa = q · q = q 2 . Генотип Аа может возникнуть двумя путями: получив ген А — от матери, а ген а от отца, или же наоборот. Вероятность каждого из них равна pq , и, таким образом, общая частота генотипа Aa = pq + pq = 2pq .

Геометрическое изображение закона Харди-Вайнберга можно представить в виде решетки Пеннета.

pA qa
pA p 2 AA pq Aa
qa pq Aa q 2 aa

p 2 + 2pq + q 2 = 1

(p + q ) 2 = 1

Особи с генотипом АА будут образовывать один тип гамет с геном А с частотой p 2 . У особей с генотипом Аа будут формироваться два типа гамет: половина с А (pq ) и половина с а (pq ). Особи с генотипом аа дадут все гаметы одного типа с геном а с частотой q 2 . Общая частота гамет с геном А , таким образом, будет равна p 2 + pq = p (p + q ) = 1 = p , а гамет с геном а : q 2 + pq = q (q + p ) = q · 1 = q .

Следовательно, частота гамет, а значит и структура популяции (соотношение разных генотипов) в ней и в следующем поколении будут такими же. В этом случае говорят, что популяция находится в состоянии равновесия.

Закон Харди-Вайнберга имеет фундаментальное значение. Его формула позволяет рассчитывать частоту разных генотипов в популяции на основании фенотипического анализа. Например, допустим, что в популяции коров животные с рецессивной красной мастью составляют 16%, остальные 84% имеют доминантную черную окраску. Следовательно, частота гомозиготного рецессива q 2 = 0,16, а q , соответственно, равна 0,4. Так как p + q = 1, то p = 0,6. Таким образом, частота гомозиготных черных животных p 2 = 0,36, а гетерозиготных 2pq = 2 · 0,4 · 0,6 = 0,48.

Одно из интересных следствий, которое вытекает из закона Харди-Вайнберга, состоит в том, что редкие гены присутствуют в популяции в основном в гетерозиготном состоянии. Так, если частота рецессивного аллеля q = 0,01, то частота его у гомозигот q 2 = 0,0001, а частота у гетерозигот pq = 0,01 · 0,99 ≈ 0,01, т.е. в гетерозиготном состоянии находится в 100 раз больше аллелей, чем в гомозиготном.

Из этого следует вывод, что устранить вредную рецессивную мутацию из популяции практически невозможно: всегда будет существовать зона гетерозигот, где она будет прятаться под прикрытием доминантного гена.

Формула Харди-Вайнберга применима для расчетов при следующих условиях:

1)если учитывается одна пара аллелей;

2)спаривание особей и сочетание гамет осуществляется случайно, т.е. нет ограничений на панмиксию;

3)мутации происходят настолько редко, что ими можно пренебречь;

4)популяция достаточно многочисленна;

5)особи с разными генотипами имеют одинаковую жизнеспособность.

Перечисленным условиям вряд ли может соответствовать хотя бы одна природная популяция. Закон справедлив для так называемой идеальной популяции. Но это ничуть не умаляет его значения. В жизни каждой популяции существуют периоды, когда она находится в состоянии равновесия по частотам отдельных генов. И если это равновесие по какой-либо причине нарушается, то популяция его достаточно быстро восстанавливает.

Популяция является формой существования любого вида. Популяция - это совокупность особей одного вида, достаточно длительное время существующая на одной территории, внутри которой осуществляется панмиксия и которая отделена от других таких же совокупностей той или иной степенью изоляции.

Совокупность генотипов всех особей, составляющих данную популяцию, носит название генофонд.

Существует ли закономерность в распределении генов и генотипов внутри генофонда? Да. Она была сформулирована в 1908 году одновременно двумя учеными: английским математиком Харди и немецким врачом Вайнбергом и получила название закона Харди-Вайнберга . Этот закон полностью справедлив только для идеальных популяций, т.е. популяций, отвечающих следующим требованиям:

1) бесконечно большая численность;

2) внутри популяции осуществляется панмиксия (свободное скрещивание);

3) отсутствуют мутации по данному гену;

4) отсутствует приток и отток генов;

5) отсутствует отбор по анализируемому признаку (признак нейтральный!).

Природные популяции в большинстве своем приближаются к идеальным, поэтому данный закон находит применение.

Закон Харди-Вайнберга имеет математическое и словесное выражения, причем в двух формулировках:

    Частоты встречаемости генов одной аллельной пары в популяции остаются постоянными из поколения в поколение.

p + q = 1 ,

где p – частота встречаемости доминантного аллеля (А ), q – частота встречаемости рецессивного аллеля (a ).

    Частоты встречаемости генотипов в одной аллельной паре в популяции остаются постоянными из поколения в поколение, а их распределение соответствует коэффициентам разложения бинома Ньютона 2-й степени.

p 2 + 2 pq + q 2 = 1

Эту формулу следует выводить с помощью генетических рассуждений.

Допустим, что в генофонде популяции доминантный аллель А встречается с частотой р , а рецессивный аллель а с частотой q . Тогда в этой же популяции женские и мужские гаметы будут нести аллель А с частотой р , а аллель а с частотой q . При свободном скрещивании (панмиксии) происходит случайное слияние гамет и образуются самые разные их сочетания:

p А

р 2 AA

q 2 aa

Запишем полученные генотипы в одну строку:

p 2 AA + 2 pqAa + q 2 aa = 1.

Теперь докажем на конкретном примере, что частоты встречаемости генов одной аллельной пары из поколения в поколение не меняются. Допустим, что в некой популяции в данном поколении pA = 0,8, qa = 0,2. Тогда в следующем поколении будет:

0,8 А

0,64 АА + 0,32 Аа + 0,04 аа = 1.

При этом частота встречаемости аллельных генов в гаметах остается без изменений:

А = 0,64+0,16 = 0,8; а = 0,04+0,16 = 0,2.

Закон Харди-Вайнберга применим и для множественных аллелей.

Так, для трех аллельных генов формулы будут следующие:

    p + q + r = 1,

    p 2 + 2pq + 2pr + 2 qr + q 2 + r 2 = 1.

Практическое значение закона Харди-Вайнберга состоит в том, что он позволяет рассчитать генетический состав популяции в данный момент и выявить тенденцию его изменения в будущем.

Применение этого закона на практике показало, что популяции отличаются друг от друга по частоте встречаемости генов. Так, по генам группы крови в системе АВ0 различия между русскими и англичанами были следующие.

Генетика человека с основами общей генетики [Учебное пособие] Курчанов Николай Анатольевич

8.1. Популяционная генетика

8.1. Популяционная генетика

Генетика популяций постулирует, что единица эволюционного процесса должна представлять собой неделимое единство и быть способной изменяться в ряду поколений. Ни вид, ни особь не удовлетворяют этим критериям. Элементарной единицей эволюционного процесса является популяция.

Популяция – это изолированная группа особей одного вида, связанная общностью территории и происхождения. Этот термин был предложен В. Иоганнсеном в 1909 г.

Представление о популяции как единице эволюции сформировалось почти сразу после возникновения дарвинизма. Популяция представляет собой непрерывный ряд поколений, она характеризуется и наследственностью, и изменчивостью. Понятие популяции применимо для организмов, как размножающихся половым путем, так и для лишенных полового процесса.

В период становления популяционной генетики считалось, что генетическая изменчивость природных популяций весьма мала, большинство локусов содержат доминантные аллели (аллели дикого типа) и лишь несколько локусов содержат мутантные аллели. Выходило, что «нормальный» генотип особи в природе гомозиготен почти по всем локусам.

В настоящее время принята так называемая балансовая теория популяций, предложенная Ф. Добжанским (Dobzhansky Тh., 1937). Согласно ей, изменчивость природных популяций очень велика, составляющие популяцию особи гетерозиготны по большинству локусов, не существует аллелей «дикого типа». При этом подчеркивается, что отсутствует какой-либо «нормальный» генотип. Генофонд популяции, включающий в себя все аллели всех населяющих популяцию особей, весьма разнообразен. Мерой генетической изменчивости популяции служит такое понятие, как гетерозиготность.

Гетерозиготность популяции показывает среднюю частоту особей, гетерозиготных по определенным локусам. Для подсчета гетерозиготности сначала определяют частоты гетерозигот по каждому локусу, а затем вычисляют среднее из полученных результатов. Чем большее количество локусов будет исследовано, тем более точная оценка изменчивости популяции будет получена. Исследования показали, что для приблизительной оценки достаточно проанализировать около 20 локусов.

Гетерозиготность – надежный показатель изменчивости. Она определяет вероятность того, что два любых аллеля одного локуса из генофонда популяции, взятые наугад, будут разными. Средняя гетерозиготность популяций человека составляет 6,7 % (Айала Ф., Кайгер Дж., 1988).

Таким образом, популяция – это совокупность генотипов, различающихся по многим локусам. Большинство локусов характеризуются множественными аллелями. Такое явление получило название полиморфизма. Количественным выражением полиморфизма популяции служит полиморфность (Р), показывающая долю полиморфных локусов. Так, если в исследованной популяции из 40 локусов 8 локусов оказались полиморфными (представленными несколькими аллелями), а 32 – мономорфными (представленными одним аллелем), то Р = 0,2, или 20 %.

Полиморфизм не выражает в полной мере степень генетической изменчивости популяции. Все локусы, имеющие больше одного аллеля, при вычислении Р будут равнозначными. Однако один локус может иметь в популяции 2 аллеля, а другой – 20. Не изменяет Р и относительная частота аллелей при одинаковом их числе. Аллели могут быть более-менее равномерно представлены в популяции, а может наблюдаться явное превалирование одного аллеля над всеми остальными.

Как и в случае многих других генетических терминов, различие между понятиями «мутация» и «полиморфизм» достаточно условное. Обычно, если какая-нибудь последовательность ДНК встречается чаще, чем в 1 % случаев, то говорят о полиморфизме, если реже, чем в 1 %, то о мутации. В геноме человека среднее число вариаций для каждого гена равняется 14 (Тарантул В. З., 2003). Значительным полиморфизмом характеризуется и число различных повторов, что у человека играет важную диагностическую роль.

Важнейшей характеристикой популяции являются показатели частот аллелей и генотипов составляющих ее особей. Их позволяет рассчитать ключевой закон популяционной генетики – закон Харди – Вайнберга. Он гласит, что при случайном скрещивании и отсутствии внешних факторов частота аллелей в популяции постоянна.

Для обозначения частот аллелей в популяционной генетике используются специальные символы: р – частота аллеля А; q – частота аллеля а; тогда p + q = 1.

Для расчета частот генотипов применяют формулу квадрата двучлена:

(p + q ) 2 = p 2 + 2pq + q 2 ,

где p 2 – частота генотипа АА; 2pq – частота генотипа Аа; q 2 – частота генотипа аа.

Применение закона Харди – Вайнберга для расчета частот аллелей у человека наглядно демонстрирует пример аутосомно-рецессивных болезней. Зная частоту встречаемости генетического заболевания, по формуле Харди – Вайнберга мы можем рассчитать частоту аллелей (с поправкой на погрешность). Например, одно из тяжелейших аутосомно-рецессивных заболеваний человека – муковисцидоз , встречается с частотой 1: 2500. Поскольку все случаи проявления обусловлены гомозиготой рецессивного аллеля, то:

q 2 = 0,0004; q = 0,02;

p = 1 – q = 1–0,02 = 0,98.

Частота гетерозигот (2pq ) = 2 ? 0,98 ? 0,02 = 0,039 (около 4 %).

Мы видим, что почти 4 % людей (совсем не мало) являются носителями гена муковисцидоза . Это показывает, сколь большое число рецессивных патогенных генов находится в скрытом состоянии.

При множественном аллелизме частоты генотипов определяются возведением в квадрат многочлена из частот аллелей. Например, имеются три аллеля: а 1 , а 2 , а 3 .

Их частоты соответственно: p, q, r . Тогда p + q + r = 1.

Для расчета частот генотипов:

(p + q + r ) 2 = p 2 + q 2 + r 2 + 2pq + 2pr + 2rq ,

где p 2 – частота генотипа а 1 а 1 ; q 2 – частота генотипа а 2 а 2 ; r 2 – частота генотипа а 3 а 3 ; 2pq – частота генотипа а 1 а 2 ; 2pr – частота генотипа а 1 а 3 ; 2rq – частота генотипа а 2 а 3 .

Необходимо отметить, что сумма частот генотипов, как сумма частот аллелей всегда будет равна 1, т. е. (p + q ) 2 = (p + q + r ) 2 = =… = 1. Частоты генотипов остаются неизменными в последующих поколениях.

Если число аллелей одного локуса обозначить k , то число возможных генотипов (N ) можно рассчитать по специальной формуле:

В строгом виде закон Харди – Вайнберга применим только для идеальной популяции, т. е. достаточно большой популяции, в которой осуществляется свободное скрещивание и не действуют внешние факторы. Только при этих условиях популяция находится в равновесии. Такие идеальные условия в природе никогда не реализуются. Рассмотрим подробнее два ограничения применения закона Харди – Вайнберга, касающиеся свободного скрещивания и действия внешних факторов.

В генетике популяций выделяют два вида скрещиваний:

1. Панмиксия – свободное скрещивание: вероятность образования брачной парыне зависит от генотипа партнеров. В отношении целых генотипов панмиксия в природе почти никогда не соблюдается, однако она вполне применима в отношении отдельных локусов.

2. Ассортативность – избирательное скрещивание: генотип влияет на выбор брачного партнера, т. е. особи с определенными генотипами спариваются чаще, чем при случайной вероятности. Избирательное скрещивание не изменяет частот генов, но изменяет частоты генотипов. Одной из крайних разновидностей ассортативности является целенаправленный инбридинг – скрещивание между родственными особями. Применительно к человеку ассортативность будет рассматриваться в разделе психогенетики.

Отклонение от равенства Харди – Вайнберга свидетельствует о том, что на популяцию действует какой-либо внешний фактор. Для анализа изменений генных частот в настоящее время разработаны сложные и довольно громоздкие системы уравнений. Это объясняется наличием переменных факторов, влияющих на результат. Разновидности эволюционных факторов мы рассмотрим чуть ниже, а пока отметим, что в любой достаточно большой популяции отклонения будут весьма незначительны, поэтому закон Харди – Вайнберга позволяет проводить важнейшие расчеты и является основой популяционной генетики. Но эти отклонения становятся значимыми, когда мы начинаем рассматривать процесс в эволюционном масштабе времени. Динамика генофонда популяций и представляет эволюцию на генетическом уровне.

Из книги Микробиология автора Ткаченко Ксения Викторовна

8. Генетика макроорганизмов Наследственный аппарат бактерий представлен одной хромосомой, которая представляет собой молекулу ДНК.Функциональными единицами генома бактерий, кроме хромосомных генов, являются: IS-последовательности, транспозоны,

Из книги Общая экология автора Чернова Нина Михайловна

8.2. Популяционная структура вида Каждый вид, занимая определенную территорию (ареал), представлен на ней системой популяций. Чем сложнее расчленена территория, занимаемая видом, тем больше возможностей для обособления отдельных популяций. Однако в не меньшей степени

Из книги Племенное разведение собак автора Сотская Мария Николаевна

Частная генетика собаки Генетика окраскиИсследованием окраски собак занимались многие ученые. Сведения по генетике этого признака были опубликованы в монографиях Ильина (1932), Доусона (1937), Уитни (1947), Бернса и Фрезер (1966) и других. Многие авторы детально исследовали

Из книги Новая наука о жизни автора Шелдрейк Руперт

Генетика поведения собак Несмотря на все многообразие и сложность поведения собаки, его наследование подчиняется тем же закономерностям, что и морфологические признаки. Разнообразие пород, отличающихся друг от друга формами поведения, издавна привлекало внимание

Из книги Наше постчеловеческое будущее [Последствия биотехнологической революции] автора Фукуяма Фрэнсис

7.1. Генетика и наследственность Наследственные различия между организмами, одинаковыми в других отношениях, зависят от генетических различий; эти последние зависят от различий в структуре ДНК или в ее расположении в хромосомах, а эти различия ведут к изменениям в

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Генетика и преступность Если есть на свете что-то более политически спорное, чем связь между наследственностью и интеллектом, то это - генетические корни преступности. Попытки свести криминальное поведение к биологии имеют столь же длинную и проблематичную историю, как

Из книги Генетика этики и эстетики автора Эфроимсон Владимир Павлович

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Из книги Эмбрионы, гены и эволюция автора Рэфф Рудольф А

Что изучает наука генетика? Генетика – это наука о наследственности и изменчивости живых организмов и методах управления ими. В зависимости от объекта исследования выделяют генетику растений, генетику животных, генетику микроорганизмов, генетику человека и т. д., а в

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

Генетика развития Не вызывает сомнений, что генетика развития представляет собой сейчас одну из наиболее активных областей биологии в отношении как теоретических построений, так и эксперимента. Однако в течение трех первых десятилетий XX в., когда и генетика, и биология

Из книги Генетика человека с основами общей генетики [Руководство для самоподготовки] автора

29. Генетика пола Вспомните!Каково соотношение мужчин и женщин в человеческой популяции?Что вам известно об определении пола из предыдущих курсов биологии?Какие организмы называют гермафродитными?Проблема взаимоотношения полов, морфологические и физиологические

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Тема 6. Молекулярная генетика Кто ясно мыслит, тот ясно излагает. А. Шопенгауэр (1788–1860), немецкий философ Молекулярная генетика изучает молекулярные основы наследственности и изменчивости. Основное положение молекулярной генетики связано с признанием ведущей роли

Из книги Антропология [Учебное пособие] автора Хасанова Галия Булатовна

Генетика популяций Генетика популяций постулирует, что единица эволюционного процесса должна представлять неделимое единство и быть способной изменяться в ряду поколений. Ни вид, ни особь не удовлетворяют этим критериям. Элементарной единицей эволюционного процесса

Из книги автора

11.2. Популяционная экология Основной структурой теоретических построений экологии является популяция. На популяционном уровне сформулированы базовые экологические понятия и

Делить аллели генов на дикие и мутантные, как мы это делали, знакомясь с основами генетики, не совсем правильно, и такое деление может привести к неправильному представлению об эволюции. Исследования природных популяций показывают, что не у всех членов популяции общий генотип, который мы условно называем диким. На самом деле, во многих популяциях наблюдается значительное генетическое разнообразие. Добржанский с коллегами провели исследования диких дрозофил на юго-западе США и обнаружили, что среди них бывают носители нескольких инверсионных вариантов каждой из хромосом. (Инверсия - это поворот одного из участков хромосомы.) В слюнных железах плодовых мушек бывают гигантские хромосомы с четким рисунком черных и белых полос, которые видны под микроскопом. Таким образом легко сравнивать хромосомы разных индивидов и определять, насколько они близки друг другу. Основное понятие популяционной генетики - частота аллеля, то есть доля определенного вида гена или хромосомы в популяции. Предположим, например (воспользовавшись обозначениями Добржанского), что 37% мушек в определенной популяции имеют вторую хромосому со «стандартной» последовательностью генов, 16% имеют инверсию «Arrowhead» и 47% - инверсию «Chiricahua». В таком случае частоты этих форм будут соответственно равны 0,37, 0,16 и 0,47. Добржанский с коллегами составил карты частот различных инверсий по всему региону и показал, что частота каждой инверсии определенным образом меняется от Калифорнии на восток и на север до Мексики. Предполагается, что некоторые генные последовательности дают их обладателям некоторые преимущества в том или ином географическом регионе. В других исследованиях получены приблизительно те же результаты. Многие гены и хромосомы существуют в разных аллельных формах и сохраняются в популяции со значительной частотой, которая, вероятно, может регулярно изменяться (например, в зависимости от сезона). Такая вариативность - богатый источник эволюции.

Разнообразие форм генов поддерживается за счет мутаций, которые с низкой частотой происходят в популяции постоянно. Некоторые изменения генотипа оказываются полезными, поэтому индивиды с генетическими изменениями получают больше шансов оставить потомство. Со временем процент индивидов с полезной мутацией увеличивается. Естественный отбор и предполагает такое репродуктивное преимущество некоторых особей. Каждый генотип имеет свою степень приспособленности, измеряемую в соответствии с частотой репродукции. Сказать, что у определенного генотипа высокая приспособленность, означает, что особи с таким генотипом имеют больше возможностей передать копии своих генов потомству.



Для образования нового вида или более крупной таксономической единицы, такой как род, изменения должны затронуть многие гены. Предположим, что в каком-то виде происходят адаптивные перемены, соответствующие изменениям в генах: геном АА ВВ mm QQ stst становится аа bb ММ qq StSt. Для этого нужны мутации А - а, В - b, т - М, Q - q и st - St. Они скорее всего произойдут независимо друг от друга, в разное время и у разных индивидов, а конечный генотип образуется посредством рекомбинаций. Можно представить себе, как мутации удлиняют и укорачивают конечности позвоночных, делают их кости более тонкими или более толстыми и постепенно создают тот облик животного, к которому мы привыкли. Некоторые исследователи смоделировали отбор по определенному генотипу в лабораторных условиях.

Популяционная генетика описывает эти процессы статистическими методами. Начнем с модели одного гена. Предположим, что в популяции имеются аллели A и a одного и того же гена, и что частота А равна 0,6p, а частота а - 0,4q. (Заметьте, что в такой простой модели р + q = 1, потому что все аллели в популяции принадлежат либо к типу А, либо к типу а.) Можно определить частоты аллелей, подсчитав количество их носителей, как гомозигот, так и гетерозигот. Каждая гомозигота переносит две копии одного и того же аллеля, а гетерозигота - по одной копии каждого.

Каковы будут частоты разных генотипов в этой популяции? Процессы мутации и отбора действуют медленно, на протяжении нескольких поколений, и для начала, предположим, что они вообще не действуют. Предположим также, что популяция достаточно велика, чтобы к ней были применимы принципы вероятности, и что индивиды спариваются случайным образом. Это значит, что ни самцы, ни самки специально не выбирают своих партнеров (например, партнер АА не предпочитает спариваться с партнерами того же генотипа). Вспомним теперь, что гаметы содержат один аллель либо А, либо а, поэтому гаметы А и а будут встречаться с теми же частотами, что и аллели, то есть р и q. Для наглядности можно представить аллели А в виде красных шариков, а аллели а - в виде синих, а весь генофонд популяции - в виде мешка с этими шариками. Для получения нового индивида мы не глядя двумя руками вынимаем из этого мешка два шарика. Вероятность того, что они оба красные равна р х р = р 2 , что они оба синие - q x q = q 2 . Иногда случается, что левой рукой мы вынимаем красный шарик, а правой синий (частота p х q = pq), а иногда наоборот: левой - синий, а правой - красный (частота q х р = qp). Отсюда получаем следующие частоты генотипов: р 2 для АА, 2pq для Аа; q 2 для аа.

Это приблизительная формула, называемая формулой Xapdu-Вайнберга, лежит в основе популяционной генетики. Более сложные ее варианты учитывают частоту мутаций и селективную приспособленность различных аллелей. С ее помощью можно также оценить распространенность в человеческой популяции наследственного заболевания, вызываемого одним аллелем. Возьмем для примера такое аутосомное рецессивное заболевание, как фенилкетонурия, которое в популяции встречается с частотой q 2 . Если в определенной популяции от фенилке-тонурии страдает один человек на 10 тыс., то q 2 = "/ 10000 - Отсюда следует, что q должно быть равно квадратному корню из "/ 10000 , то есть "/ 100 . Так как р + q = I, то р = 99 / 100 . Тогда согласно формуле Харди-Вайнберга частота гетерозиготных носителей 2pq = 2 х 99 / 100 х 1/ 100= 1 / 50 (приблизительно). Эти подсчеты показывают, что гетерозиготные носители встречаются гораздо чаще (приблизительно один на 50 человек), чем гомозиготные больные. Знание частоты гетерозигот очень помогает при генетическом консультировании. Зная данные о распространении гетерозигот, можно также постараться устранить методом отбора рецессивный аллель из популяции, как будет описано далее.

1. Что понимают под изменчивостью организмов? Какие её виды вам известны?

Изменчивость - свойство всех живых организмов приобретать в процессе индивидуального развития новые признаки.

Различают наследственную и модификационную изменчивость.

2. Что такое генотип и фенотип?

Совокупность всех генов какого-либо организма называют генотипом.

Совокупность всех внешних и внутренних признаков и свойств организма называют фенотипом.

3. Что такое гены? Какие гены называют аллельными?

Ген - это участок ДНК, несущий информацию о строении одной молекулы белка.

Аллельные гены - различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологических хромосом.

4. Что такое мутации? Какие виды мутаций вам известны?

Мутации - это изменения генотипа, происходящие под влиянием факторов внешней или внутренней среды.

Мутации могут затрагивать генотип в различной степени, и поэтому их делят на генные, хромосомные и геномные. Среди них встречаются следующие виды мутаций: утрата, делеция, дупликация, инверсия, полиплоидия.

Вопросы

1. Что изучает популяционная генетика?

Популяционная генетика изучает как аллели ведут себя в популяции, в чём состоят механизмы, изменяющие соотношение аллелей в пределах популяции, и как протекают в популяции эволюционные изменения.

2. Что такое генофонд?

Генофонд - совокупность всех генотипов, представленных в популяции.

3. Почему генофонд популяции постоянно изменяется?

Генофонд популяции постоянно изменяется под влиянием разных экологических факторов. Во-первых, это связано с мутационной изменчивостью самих генотипов, образующих генофонд. Во-вторых, генофонд может направленно изменяться под действием отбора. У разных групп организмов изменчивость генофонда различна, но в целом она достаточно высока.

4. Какое значение имеет изучение изменения генофонда популяций?

Изучение состава генофонда популяции позволяет сделать вывод о происходящих в ней эволюционных изменениях.

5. Какие факты могут служить доказательством приспособительного (адаптивного) характера изменений генофонда?

Одним из примеров, доказывающих приспособительный характер изменений генофонда популяции, может служить так называемый индустриальный механизм у березовой пяденицы. Окраска крыльев этой бабочки имитирует окраску коры берез, на которых эти сумеречные бабочки проводят светлое время суток. В популяциях, обитающих в индустриальных районах, со временем стали преобладать ранее крайне редкие темные бабочки, а белые, напротив, стали редкими. В генофондах этих популяций изменилась частота аллелей, определяющих соответствующую покровительственную окраску.

6. Какие изменения генофонда позволяют делать вывод о происходящих в популяции эволюционных изменениях?

О происходящих в популяции эволюционных изменениях можно судить по изменению частоты встречаемости отдельных генов. Происходящие изменения внешнего строения организмов, особенностей их поведения и образа жизни и в конечном итоге - по лучшей приспособленности популяции к данным условиям внешней среды, являются следствием возрастания в генофонде частот одних генов и снижения частот других.

Задания

Подумайте, какие выводы о причинах различия в генетическом составе разных популяций человека можно сделать, учитывая тот факт, что люди с разными группами крови обладают разной восприимчивостью к некоторым болезням (малярии, диабету, астме и т. д.).

Причиной различия в генетическом составе разных популяций человека можно считать влияние определенной среды определенный период времени. С генетической точки зрения изменчивость представляет собой результат реакции генотипа в процессе индивидуального развития организма на условия внешней среды.

Изучив основной текст параграфа и познакомившись с дополнительным текстом, обсудите с одноклассниками, какие свойства живого, процессы и явления могут рассматриваться в качестве главных движущих сил эволюции с позиций современной биологической науки.

Ч. Дарвин и его последователи к основным факторам эволюции относили изменчивость, наследственность и естественный отбор. В настоящее время к ним добавляют множество других дополнительных, неосновных факторов, которые, тем не менее, оказывают влияние на эволюционный процесс, а сами основные факторы понимаются теперь по-новому.

Ведущие факторы эволюции. К ведущим факторам эволюции в настоящее время относят мутационные процессы, популяционные волны численности, изоляцию и естественный отбор.

Поскольку мутации возникают случайно, постольку их результат становится неопределенным, однако случайное изменение становится необходимым, когда оно оказывается полезным для организма, помогает ему выжить в борьбе за существование. Закрепляясь и повторяясь в ряде поколений, случайные изменения вызывают перестройку в структуре живых организмов и их популяций и таким образом приводят к возникновению новых видов. Популяции, насыщенные мутациями, обладают широкими возможностями для совершенствования существующих и выработки новых приспособлений в измененяющихся условиях среды. Однако сам мутационный процесс без участия других факторов эволюции не может направлять изменение природной популяции. Он является лишь поставщиком элементарного эволюционного материала.

Популяционными волнами называют колебания численности особей в популяции. Причины этих колебаний могут быть различными. Например, резкое сокращение численности популяции может произойти вследствие истощения кормовых ресурсов. Среди оставшихся в живых немногочисленных особей могут оказаться редкие генотипы. Если в дальнейшем численность восстановится за счет этих особей, то это приведет к случайному изменению частот генов в генофонде данной популяции. Таким образом, популяционные волны являются поставщиком эволюционного материала.

В качестве третьего основного фактора эволюции выступает обособленность (изоляция) группы организмов. На эту особенность указывал еще Дарвин, который считал, что для образования нового вида определенная группа старого вида должна обособиться, но он не мог объяснить необходимость этого требования с точки зрения наследственности. В настоящее время установлено, что обособление и изоляция определенной группы организмов необходимы для того, чтобы она не могла скрещиваться с другими видами и тем самым передавать им и получать от них генетическую информацию.

Направляющий фактор - естественный отбор. Однако в настоящее время представления о естественном отборе дополнились новыми фактами, значительно расширились и углубились. Естественный отбор следует понимать как избирательное выживание и возможность оставления потомства отдельными особями. Биологическое значение особи, давшей потомство, определяется ее вкладом в генофонд популяции. Отбор действует в популяции, его объектами являются фенотипы отдельных особей. Фенотип организма формируется на основе реализации информации генотипа в определенных условиях среды. Таким образом, отбор из поколения в поколение по фенотипам ведет к отбору генотипов, так как потомкам передаются не признаки, а генные комплексы.