Разложение квадратного трехчлена. Квадратный трехчлен. Разложение квадратного трехчлена на множители

Мир погружён в огромное количество чисел. Любые исчисления происходят с их помощью.

Люди учат цифры для того, чтобы в дальнейшей жизни не попадаться на обман. Необходимо уделять огромное количество времени, чтобы быть образованным и рассчитать собственный бюджет.

Математика - это точная наука, которая играет большую роль в жизни. В школе дети изучают цифры, а после, действия над ними.

Действия над числами бывают совершенно разными: умножение, разложение, добавление и прочие. Помимо простых формул, в изучении математики используют и более сложные действия. Существует огромное количество формул, по которым узнают любые значения.

В школе, как только появляется алгебра, в жизнь школьника добавляются формулы упрощения. Бывают уравнения, когда неизвестных числа два, но найти простым способом не получится. Трёхчлен - соединение трёх одночленов, с помощью простого метода отнимания и добавления. Трёхчлен решается с помощью теоремы Виета и дискриминанта.

Формула разложения квадратного трёхчлена на множители

Существуют два правильных и простых решения примера :

  • дискриминант;
  • теорема Виета.

Квадратный трёхчлен имеет неизвестный в квадрате, а также число без квадрата. Первый вариант для решения задачи использует формулу Виета. Это простая формула , если цифры, что стоят перед неизвестным, будут минимальным значением.

Для других уравнений, где число стоит перед неизвестным, уравнение необходимо решать через дискриминант. Это более сложное решение, но используют дискриминант намного чаще, нежели теорему Виета.

Изначально, для нахождения всех переменных уравнения необходимо возвести пример к 0. Решение примера можно будет проверить и узнать правильно ли подстроены числа.

Дискриминант

1. Необходимо приравнять уравнение к 0.

2. Каждое число перед х будет названо числами a, b, c. Так как перед первым квадратным х нет числа, то оно приравнивается к 1.

3. Теперь решение уравнения начинается через дискриминант:

4. Теперь нашли дискриминант и находим два х. Разница заключается в том, что в одном случае перед b будет стоять плюс, а в другом минус:

5. По решению два числа получилось -2 и -1. Подставляем под первоначальное уравнение:

6. В этом примере получилось два правильных варианта. Если оба решения подходят, то каждое из них является истинным.

Через дискриминант решают и более сложные уравнение. Но если само значение дискриминанта будет меньше 0, то пример неправильный. Дискриминант при поиске всегда под корнем, а отрицательное значение не может находиться в корне.

Теорема Виета

Применяется для решения лёгких задач, где перед первым х не стоит число, то есть a=1. Если вариант совпадает, то расчёт проводят через теорему Виета.

Для решения любого трёхчлена необходимо возвести уравнение к 0. Первые шаги у дискриминанта и теоремы Виета не отличаются.

2. Теперь между двумя способами начинаются отличия. Теорема Виета использует не только «сухой» расчёт, но и логику и интуицию. Каждое число имеет свою букву a, b, c. Теорема использует сумму и произведение двух чисел.

Запомните! Число b всегда при добавлении стоит с противоположным знаком, а число с остаётся неизменным!

Подставляя значения данные в примере, получаем:

3. Методом логики подставляем наиболее подходящие цифры. Рассмотрим все варианты решения:

  1. Цифры 1 и 2. При добавлении получаем 3, но если умножить, то не получится 4. Не подходит.
  2. Значение 2 и -2. При умножении будет -4, но при добавлении получается 0. Не подходит.
  3. Цифры 4 и -1. Так как в умножении стоит отрицательное значение, значит, одно из чисел будет с минусом. При добавлении и умножении подходит. Правильный вариант.

4. Остаётся только проверить, раскладывая числа, и посмотреть правильность подобранного варианта.

5. Благодаря онлайн-проверке мы узнали, что -1 не подходит по условию примера, а значит является неправильным решением.

При добавлении отрицательного значения в примере, необходимо цифру заносить в скобки.

В математике всегда будут простые задачи и сложные. Сама наука включает в себя разнообразие задач, теорем и формул. Если понимать и правильно применять знания, то любые сложности с вычислениями будут пустяковыми.

Математика не нуждается в постоянном запоминании. Нужно научится понимать решение и выучить несколько формул. Постепенно, по логическим выводам, можно решать похожие задачи, уравнения. Такая наука может с первого взгляда показаться очень тяжёлой, но если окунутся в мир чисел и задач, то взгляд резко изменится в лучшую сторону.

Технические специальности всегда остаются самыми востребованными в мире. Сейчас, в мире современных технологий, математика стала незаменимым атрибутом любой сферы. Нужно всегда помнить о полезных свойствах математики.

Разложение трёхчлена с помощью скобки

Кроме решения привычными способами, существует ещё один - разложение на скобки. Используют с применением формулы Виета.

1. Приравниваем уравнение к 0.

ax 2 + bx+ c = 0

2. Корни уравнения остаются такими же, но вместо нуля теперь используют формулы разложения на скобки.

ax 2 + bx+ c = a ( x – x 1) ( x – x 2)

2 x 2 – 4 x – 6 = 2 ( x + 1) ( x – 3)

4. Решение х=-1, х=3

Пример 1.1


x 4 + x 3 - 6 x 2 .

Решение

Выносим x 2 за скобки:
.
2 + x - 6 = 0 :
.
Корни уравнения:
, .


.

Ответ

Пример 1.2

Разложить на множители многочлен третьей степени:
x 3 + 6 x 2 + 9 x .

Решение

Выносим x за скобки:
.
Решаем квадратное уравнение x 2 + 6 x + 9 = 0 :
Его дискриминант: .
Поскольку дискриминант равен нулю, то корни уравнения кратные: ;
.

Отсюда получаем разложение многочлена на множители:
.

Ответ

Пример 1.3

Разложить на множители многочлен пятой степени:
x 5 - 2 x 4 + 10 x 3 .

Решение

Выносим x 3 за скобки:
.
Решаем квадратное уравнение x 2 - 2 x + 10 = 0 .
Его дискриминант: .
Поскольку дискриминант меньше нуля, то корни уравнения комплексные: ;
, .

Разложение многочлена на множители имеет вид:
.

Если нас интересует разложение на множители с действительными коэффициентами, то:
.

Ответ

Примеры разложения многочленов на множители с помощью формул

Примеры с биквадратными многочленами

Пример 2.1

Разложить биквадратный многочлен на множители:
x 4 + x 2 - 20 .

Решение

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) .

;
.

Ответ

Пример 2.2

Разложить на множители многочлен, сводящийся к биквадратному:
x 8 + x 4 + 1 .

Решение

Применим формулы:
a 2 + 2 ab + b 2 = (a + b) 2 ;
a 2 - b 2 = (a - b)(a + b) :

;

;
.

Ответ

Пример 2.3 с возвратным многочленом

Разложить на множители возвратный многочлен:
.

Решение

Возвратный многочлен имеет нечетную степень. Поэтому он имеет корень x = -1 . Делим многочлен на x - (-1) = x + 1 . В результате получаем:
.
Делаем подстановку:
, ;
;


;
.

Ответ

Примеры разложения многочленов на множители с целыми корнями

Пример 3.1

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

6
-6, -3, -2, -1, 1, 2, 3, 6 .
(-6) 3 - 6·(-6) 2 + 11·(-6) - 6 = -504 ;
(-3) 3 - 6·(-3) 2 + 11·(-3) - 6 = -120 ;
(-2) 3 - 6·(-2) 2 + 11·(-2) - 6 = -60 ;
(-1) 3 - 6·(-1) 2 + 11·(-1) - 6 = -24 ;
1 3 - 6·1 2 + 11·1 - 6 = 0 ;
2 3 - 6·2 2 + 11·2 - 6 = 0 ;
3 3 - 6·3 2 + 11·3 - 6 = 0 ;
6 3 - 6·6 2 + 11·6 - 6 = 60 .

Итак, мы нашли три корня:
x 1 = 1 , x 2 = 2 , x 3 = 3 .
Поскольку исходный многочлен - третьей степени, то он имеет не более трех корней. Поскольку мы нашли три корня, то они простые. Тогда
.

Ответ

Пример 3.2

Разложить многочлен на множители:
.

Решение

Предположим, что уравнение

имеет хотя бы один целый корень. Тогда он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
-2, -1, 1, 2 .
Подставляем поочередно эти значения:
(-2) 4 + 2·(-2) 3 + 3·(-2) 3 + 4·(-2) + 2 = 6 ;
(-1) 4 + 2·(-1) 3 + 3·(-1) 3 + 4·(-1) + 2 = 0 ;
1 4 + 2·1 3 + 3·1 3 + 4·1 + 2 = 12 ;
2 4 + 2·2 3 + 3·2 3 + 4·2 + 2 = 54 .
Если предположить, что это уравнение имеет целый корень, то он является делителем числа 2 (члена без x ). То есть целый корень может быть одним из чисел:
1, 2, -1, -2 .
Подставим x = -1 :
.

Итак, мы нашли еще один корень x 2 = -1 . Можно было бы, как и в предыдущем случае, разделить многочлен на , но мы сгруппируем члены:
.

Поскольку уравнение x 2 + 2 = 0 не имеет действительных корней, то разложение многочлена на множители имеет вид.

Квадратным трёхчленом называется многочлен вида ax^2 + bx + с, где x - переменная, а, b и с - некоторые числа, причем, а ≠ 0.

Чтобы разложить трехчлен на множители, нужно знать корни этого трехчлена. (далее пример на трехчлене 5х^2 + 3х- 2)

Заметим: значение квадратного трёхчлена 5х^2 + 3х - 2 зависит от значения х. Например: Если х = 0, то 5х^2 + 3х - 2 = -2

Если х = 2, то 5х^2 + 3х - 2 = 24

Если х = -1, то 5х^2 + 3х - 2 = 0

При х = -1 квадратный трёхчлен 5х^2 + 3х - 2 обращается в нуль, в этом случае число -1 называют корнем квадратного трёхчлена .

Как получить корень уравнения

Поясним, как мы получили корень этого уравнения. Для начала необходимо четко знать теорему и формулу, по которой мы будем работать:

“Если х1 и х2 – корни квадратного трехчлена ax^2 + bx + c, то ax^2 + bx + c = a(x - x1)(x - x2)”.

Х = (-b±√(b^2-4ac))/2a \

Это формула нахождения корней многочлена является самой примитивной формулой, решая по которой вы никогда не запутаетесь.

Выражение 5х^2 + 3х – 2.

1. Приравниваем к нулю: 5х^2 + 3х – 2 = 0

2. Находим корни квадратного уравнения, для этого подставляем значения в формулу (а – коэффициент при Х^2, b – коэффициент при Х, свободный член, то есть цифра без Х):

Первый корень находим со знаком плюс перед корнем квадратным:

Х1 = (-3 + √(3^2 - 4 * 5 * (-2)))/(2*5) = (-3 + √(9 -(-40)))/10 = (-3 + √(9+40))/10 = (-3 + √49)/10 = (-3 +7)/10 = 4/(10) = 0,4

Второй корень со знаком минус перед корнем квадратным:

X2 = (-3 - √(3^2 - 4 * 5 * (-2)))/(2*5) = (-3 - √(9- (-40)))/10 = (-3 - √(9+40))/10 = (-3 - √49)/10 = (-3 - 7)/10 = (-10)/(10) = -1

Вот мы и нашли корни квадратного трехчлена. Чтобы убедиться, что они верные, можно сделать проверку: сначала подставляем первый корень в уравнение, затем второй:

1) 5х^2 + 3x – 2 = 0

5 * 0,4^2 + 3*0,4 – 2 = 0

5 * 0,16 + 1,2 – 2 = 0

2) 5х^2 + 3x – 2 = 0

5 * (-1)^2 + 3 * (-1) – 2 = 0

5 * 1 + (-3) – 2 = 0

5 – 3 – 2 = 0

Если при подстановке всех корней уравнение обращается в ноль, значит уравнение решено верно.

3. Теперь воспользуемся формулой из теоремы: ax^2 + bx + c = a(x-x1)(x-x2), помним, что Х1 и Х2 – это корни квадратного уравнения. Итак: 5х^2 + 3x – 2 = 5 * (x - 0,4) * (x- (-1))

5х^2 + 3x– 2 = 5(x - 0,4)(x + 1)

4. Чтобы убедиться в правильности разложения можно просто перемножить скобки:

5(х - 0,4)(х + 1) = 5(х^2 + x - 0,4x - 0,4) = 5(x^2 + 0,6x – 0,4) = 5x^2 +3 – 2. Что подтверждает правильность решения.

Второй вариант нахождения корней квадратного трехчлена

Еще один вариант нахождения корней квадратного трехчлена - теорема обратная теореме Виетта. Здесь корни квадратного уравнения находятся по формулам: x1 + x2 = -(b) , х1 * х2 = с . Но важно понимать, что данной теоремой можно пользоваться только в том случае, если коэффициент а = 1, то есть число, стоящее перед х^2 = 1.

Например: x^2 – 2x +1 = 0, a = 1, b = - 2, c = 1.

Решаем: х1 + х2 = - (-2), х1 + х2 = 2

Теперь важно подумать, какие числа в произведении дают единицу? Естественно это 1 * 1 и -1 * (-1) . Из этих чисел выбираем те, которые соответствую выражению х1 + х2 = 2, конечно же - это 1 + 1. Вот мы и нашли корни уравнения: х1 = 1, х2 = 1. Это легко проверить, если подставить в выражение x^2 – 2x + 1 = 0.

Квадратный трехчлен ax 2 +bx+c можно разложить на линейные множители по формуле:

ax 2 +bx+c=a (x-x 1)(x-x 2) , где x 1, x 2 — корни квадратного уравнения ax 2 +bx+c=0.

Разложить квадратный трехчлен на линейные множители:

Пример 1). 2x 2 -7x-15.

Решение. 2x 2 -7x-15=0.

a =2; b =-7; c =-15. Это общий случай для полного квадратного уравнения. Находим дискриминант D .

D=b 2 -4ac=(-7) 2 -4∙2∙(-15)=49+120=169=13 2 >0; 2 действительных корня.

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

2x 2 -7x-15=2 (х+1,5)(х-5)=(2х+3)(х-5). Мы представили данный трехчлен 2x 2 -7x-15 2х+3 и х-5.

Ответ: 2x 2 -7x-15=(2х+3)(х-5).

Пример 2). 3x 2 +2x-8 .

Решение. Найдем корни квадратного уравнения:

a =3; b =2; c =-8. Это частный случай для полного квадратного уравнения с четным вторым коэффициентом (b =2). Находим дискриминант D 1 .

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

Мы представили трехчлен 3x 2 +2x-8 в виде произведения двучленов х+2 и 3х-4 .

Ответ: 3x 2 +2x-8=(х+2) (3х-4) .

Пример 3) . 5x 2 -3x-2.

Решение. Найдем корни квадратного уравнения:

a =5; b =-3; c =-2. Это частный случай для полного квадратного уравнения с выполненным условием: a+b+c=0 (5-3-2=0). В таких случаях первый корень всегда равен единице, а второй корень равен частному от деления свободного члена на первый коэффициент:

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

5x 2 -3x-2=5 (х-1)(х+0,4)=(х-1)(5х+2). Мы представили трехчлен 5x 2 -3x-2 в виде произведения двучленов х-1 и 5х+2.

Ответ: 5x 2 -3x-2=(х-1) (5х+2).

Пример 4). 6x 2 +x-5.

Решение. Найдем корни квадратного уравнения:

a =6; b =1; c =-5. Это частный случай для полного квадратного уравнения с выполненным условием: a-b+c=0 (6-1-5=0). В таких случаях первый корень всегда равен минус единице, а второй корень равен минус частному от деления свободного члена на первый коэффициент:

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

Мы представили трехчлен 6x 2 +x-5 в виде произведения двучленов х+1 и 6х-5 .

Ответ: 6x 2 +x-5=(х+1) (6х-5) .

Пример 5). x 2 -13x+12.

Решение. Найдем корни приведенного квадратного уравнения:

x 2 -13x+12=0. Проверим, можно ли применить . Для этого найдем дискриминант и убедимся, что он является полным квадратом целого числа.

a =1; b =-13; c =12. Находим дискриминант D.

D=b 2 -4ac =13 2 -4∙1∙12=169-48=121=11 2 .

Применим теорему Виета: сумма корней должна быть равна второму коэффициенту, взятому с противоположным знаком, а произведение корней должно быть равно свободному члену:

x 1 +x 2 =13; x 1 ∙x 2 =12. Очевидно, что x 1 =1; x 2 =12.

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2).

x 2 -13x+12=(х-1)(х-12).

Ответ: x 2 -13x+12=(х-1) (х-12) .

Пример 6). x 2 -4x-6.

Решение. Найдем корни приведенного квадратного уравнения:

a =1; b =-4; c =-6. Второй коэффициент — четное число. Находим дискриминант D 1 .

Дискриминант не является полным квадратом целого числа, поэтому, теорема Виета нам не поможет, и мы найдем корни по формулам для четного второго коэффициента:

Применим формулу: ax 2 +bx+c=a (x-x 1)(x-x 2) и запишем ответ.

Квадратным трехчленом называют трехчлен вида a*x 2 +b*x+c, где a,b,c некоторые произвольные вещественные (действительные) числа, а x – переменная. Причем число а не должно равняться нулю.

Числа a,b,c называются коэффициентами. Число а – называется старшим коэффициентом, число b коэффициентом при х, а число с называют свободным членом.

Корнем квадратного трехчлена a*x 2 +b*x+c называют любое значение переменной х, такое, что квадратный трехчлен a*x 2 +b*x+c обращается в нуль.

Для того, чтобы найти корни квадратного трехчлена необходимо решить квадратное уравнение вида a*x 2 +b*x+c=0.

Как найти корни квадратного трехчлена

Для решения можно использовать один из известных способов.

  • 1 способ.

Нахождение корней квадратного трехчлена по формуле.

1. Найти значение дискриминанта по формуле D =b 2 -4*a*c.

2. В зависимости от значения дискриминанта вычислить корни по формулам:

Если D > 0, то квадратный трехчлен имеет два корня.

x = -b±√D / 2*a

Если D < 0, то квадратный трехчлен имеет один корень.

Если дискриминант отрицателен, то квадратный трехчлен не имеет корней.

  • 2 способ.

Нахождение корней квадратного трехчлена выделением полного квадрата. Рассмотрим на примере приведенного квадратного трехчлена. Приведенное квадратное уравнение, уравнение у которого на старший коэффициент равен единице.

Найдем корни квадратного трехчлена x 2 +2*x-3. Для этого решим следующее квадратное уравнение: x 2 +2*x-3=0;

Преобразуем это уравнение:

В левой части уравнения стоит многочлен x 2 +2*x, для того чтобы представить его в виде квадрата суммы нам необходимо чтобы там был еще один коэффицент равный 1. Добавим и вычтем из этого выражения 1, получим:

(x 2 +2*x+1) -1=3

То, что в скобках можно представить в виде квадрата двучлена

Данное уравнение распадается на два случая либо x+1=2 , либо х+1=-2.

В первом случае получаем ответ х=1, а во втором, х=-3.

Ответ: х=1, х=-3.

В результате преобразований нам необходимо получить в левой части квадрат двучлена, а в правой части некоторое число. В правой части не должна содержаться переменная.