Угловой интерьер с тенями. Построение теней в перспективных проекциях


Изображение теней придает перспективе дополнительную выразительность и объемность. Направление световых лучей в отличие от комплексного чертежа может быть произвольным. При этом возможны три случая расположения параллельных световых лучей, идущих от солнца: лучи направлены от наблюдателя к объекту, лучи направлены от объекта к наблюдателю, лучи параллельны картинной плоскости (фронтальное положение лучей). При этом угол наклона лучей может быть произвольным в каждом из этих случаев. Для построения теней в перспективе необходимо знать перспективную проекцию луча, а также его вторичную перспективную проекцию. На рис.8.1 – 8.3 показано построение теней на предметную плоскость от горизонтального отрезка в каждом из вышеперечисленных случаев. Параллельные лучи будут иметь общую точку схода. Точка схода вторичных проекций лучей F 1 т находится на линии горизонта. Точка схода перспективной проекции лучей F т в первом случае находится ниже линии горизонта (рис.8.1), во втором случае (рис.8.2) – выше линии горизонта, в третьем случае (рис.8.3) – точка схода отсутствует. Перспективная проекция тени A т от точки A находится в пересечении вторичной проекции светового луча, направленного из вторичной проекции точки A 1 / в точку схода F 1 т , с перспективной проекцией светового луча, направленного из точки A / в точку схода F т . Аналогичным образом строится тень от точки B , что позволяет построить тень от отрезка по двум точкам.

Тень от горизонтальной прямой AB на горизонтальную плоскость также является горизонтальной прямой A т B т , которая параллельна исходному отрезку AB , и следовательно, имеет ту же точку схода F . Тень от вертикальной прямой на горизонтальную плоскость совпадает с направлением вторичной проекции светового луча (рис.8.4).

На практике чаще всего используется первый случай направления световых лучей, т.к. большая часть объекта в этом случае освещена и перспектива выглядит наиболее выразительно.

Из всех способов построения теней, известных по теням на комплексном чертеже, в перспективе используются только два: способ лучевых сечений и способ обратных лучей. Остальные способы не используются, т.к. приводят к сложным построениям.

Последовательность построения теней такая же, как и на комплексном чертеже: выявляется контур собственной тени, затем строится падающая тень от контура собственной тени каждого геометрического образа на предметную плоскость (на комплексном чертеже на стену), затем падающие тени от одного геометрического образа на другой.

На рис.8.5 показано построение теней на примере двух параллелепипедов. От контура собственной тени 1 / - 2 / - 3 / - 1 1 / - 2 1 / - 3 1 / малого параллелепипеда построена тень на предметную плоскость как от вертикальных и горизонтальных прямых. Затем построена тень от контура собственной тени 4 / - 5 / - 6 / - 4 1 / - 5 1 / - 6 1 / большого параллелепипеда на предметную плоскость. Контуром падающей тени обоих параллелепипедов является огибающий контур обеих теней. Кроме того, тень от большого параллелепипеда падает на верхнюю горизонтальную и переднюю вертикальную грани малого параллелепипеда. Для этого строятся лучевые сечения малого параллелепипеда, полученные от пересечения лучевых плоскостей, проведенных через контур собственных теней большого параллелепипеда. Такая лучевая плоскость проведена через ребро 4 / - 4 1 / большого параллелепипеда, и она пересекла малый параллелепипед по сечению, которое является контуром падающей. Другие участки собственной тени большого параллелепипеда дают тени только на предметную плоскость. На рис.8.6 построены тени от тех же параллелепипедов при фронтальном положении лучей.

Лекция 8

Построение перспективы и тени в перспективе

План

1. Перспектива геометрических тел.

2. Выбор точки зрения при построении перспективного изображения.

3. Построение перспективного изображения здания .

4. Тени в перспективе..

1. ПЕРСПЕКТИВА ГЕОМЕТРИЧЕСКИХ ТЕЛ

Построение перспективного изображения куба (рис.99). Картинную плоскость проводим че­рез ребро куба ВМ, в этом случае оно будет проецироваться на картинной плоскости в натуральный размер. За­дадимся положением линии горизонта и произведем все построения ана­логично предыдущим (рис. 99). Точки схода прямых АВ, CD , AD и СВ определяются ранее рассмотренным способом.

Перенос точек с основания кар­тинной плоскости на картину произ­водится как и в предыдущих при­мерах.

На картине из точки В-М восстав­ляем перпендикуляр, на котором от­кладываем натуральную длину ребра куба ВМ. Крайние точки ребра сое­диняем с точками схода F 1 и F 2 , а из точек A к = Е k и С к = G K восставляем перпендикуляр до пересечения с ли­ниями, представляющими полные перспективы прямых, идущих от реб­ра ВМ к точкам схода. Таким обра­зом, получим перспективное изобра­жение ребер АЕ и CG . Чтобы полу­чить изображение ребра DK , надо из крайних ребер точек АЕ и CG про­вести прямые в точки схода F 1 и F 2 . На пересечении этих линий получим точки ребра DK .

Если вторая точка схода лежит вне пределов чертежа, например точ­ка F 2 , то можно построить перспекти­ву и с одной точкой схода F 1 . Для этого продолжим горизонтальную проекцию D l A l до пересечения с картинной плоскостью в точке N 1 , Точку N 1 перенесем на картину и из нее восставим перпендикуляр, на ко­тором отложим натуральную высоту куба. Соединяя полученные точки с правой точкой схода F 2 , получим пер­спективное изображение ребер куба АЕ и DK как результат пересечения прямых N l F 2 с перпендикулярами АЕ и DK , восставленными с картинной плоскости.

Так же можно построить изобра­жение куба, если использовать пря­мые, перпендикулярные картинной плоскости, проведенные через верши­ны куба. На рис. 99, б показано построение перспективы двух ребер АЕ и CG . В этом случае главный луч зрения направляют так. чтобы он не совпадал с ребром KD .

Перспективное изображение может быть построено с увеличением в не­сколько раз. например в 2 или 4 и т д. Для этого все размеры как по верти­кали, так и по горизонтали увеличи­вают при переносе всех точек на кар­тину. На рис.100 дан пример по­строения перспективного изображения двух геометриче­ских тел, куба и параллеле­пипеда, расположенных на одном уровне. Картинная пло­скость проведена так. чтобы два реб­ра (одно у куба, другое у параллеле­пипеда) проецировались на картин­ной плоскости без искажения, т. е. картинная плоскость проведена через ребро 4 параллелепипеда и ребро А куба. Линия горизонта проведена так, чтобы у куба было видно верхнее основание, а у параллелепипеда верх­нее основание будет невидимым.

Зрителя располагаем так, чтобы главный луч зрения был перпендику­лярен картинной плоскости (картине) и главная точка Р находилась в сред­ней трети картины.

Через все точки фигуры проводим лучи в точку зрения и находим левую и правую точки схода. Затем след картинной плоскости вместе со всеми точками переносим на то место, где будет строиться перспективное изоб­ражение.

На картине вначале находим на­туральные ребра 4 и А и от них проводим линии в точки схода. Про­ведя из точек 1 к , 2 К , 3 к , D K , С к и В к вертикальные прямые линии, нахо­дим перспективное изображение каж­дой точки. Соединяя их между собой, получим перспективное изображение заданных объемов.

2. ВЫБОР ТОЧКИ ЗРЕНИЯ ПРИ ПОСТРОЕНИИ ПЕРСПЕКТИВНОГО ИЗОБРАЖЕНИЯ

Чтобы изображение в перспективе хорошо смотрелось, надо учитывать естественный угол зрения человека, поэтому относительное расположение объекта, картины и точки зрения не может быть произвольным.

При выборе точки зрения рекомен­дуется придерживаться следующих положений:

Главный луч зрения должен быть направлен перпендикулярно картин­ной плоскости и делить картину при­мерно пополам или находиться в средней трети картины. Картиной на­зывается то. что будет заключено между крайними лучами, идущими от зрителя к предмету;

Желательно соблюдать соотноше­ние АВ/ВС = A k B k / B k C k (рис.101);

Угол между основанием картины и сооружением должен составлять 20 е …40°;

Зритель должен находиться на та­ком расстоянии от предмета, чтобы предмет был включен в конус ясного зрения или был бы в поле ясного зрения. Для этого угол между край­ними лучами зрения должен быть в пределах 28°.. .37° (рис. 102);

В том случае, когда у соору­же­ния вертикальные разме­ры больше гори­зон­таль­ных, зрите­лю следует отойти на полторы-две высоты от сооруже­ния для того, чтобы угол зрения в вертикальной плоскости оказал­ся в допускаемых границах (рис. 103);

По расположению картин­ной пло­скости относительно объек­та перспек­тивы могут быть двух видов: цен­тральная фронтальная перспектива применяется для построения интерье­ров, т. е. перспективы внутреннего вида помещений (рис. 104); угловая перспектива (рис.105) применяется при изображении отдельных объек­тов, в этом случае картинная пло­скость располагается под углом к объекту.

По расположению линии горизонта перспективные изобра­же­­ния могут быть (см. рис. 105, а ): с нормальной высотой горизонта, т. е. на высоте человеческого роста 1,5... 1,7 м, при­меняется при построении перспективы на ровном месте (рис. 105, б ); при виде снизу применяется для отдель­ных деталей, наблюдаемых снизу, и для зданий, стоящих на возвышении (рис. 105, в ): с высоким горизонтом, при этом высоту горизонта берут до 100 м и выше (рис. 105, г ).

По расстоянию точки зрения от предмета перспективы могут быть разделены на перспективы с острым, резким ракурсом и перспективы с ту­пым, пологим ракурсом. Ракурсом называется поло­же­ние изображаемо­го предмета относительно картинной плос­кос­ти, при котором получается резкое укорочение удаленных от перед­него плана частей. Мери­лом ракурса является отношение перспективного изображения ре­бер ВВ 0 на переднем плане (см. рис.106, а и б) к ребру А 1 А 0 наиболее удаленного ребра той же грани ВВ 0 /А"А 0 .

При выборе точки зрения необхо­димым условием является реальное расположение точки зрения, т.е. наи­лучшее. Выбирая точку зрения, мож­но использовать такую схему (рис.107). Намечая точки стояния, мыс­ленно представить, как будет выглядеть здание. Например, точка 1 (см. рис. 106, 107) показывает вид зда­ния сбоку. Основная часть фасада скрыта, точка 2 хорошо раскрывает основной фасад, но не видны боковые стороны; точка 3 дает вид на оба фасада, то так как перспективный ра­курс для обоих фасадов одинаков, пер­спектива здания оказалась невырази­тельной; точку 4 можно считать наибо­лее удачной, так как с этой точки зрения композиция здания раскрывается наилучшим образом.

3. ПОСТРОЕНИЕ ПЕРСПЕКТИВНОГО

ИЗОБРАЖЕНИЯ ЗДАНИЯ

Перспектива любого здания (соору­жения) складывается из перспективы множества точек, каждая из которых строится как след луча зрения на кар­тинной плоскости. Существует несколь­ко способов построения перспектив. К основным способам построения перспективы относятся:

1. способ архитекторов, основанный на использовании точек схода параллельных прямых;

2. способ прямоугольных координат и перспективной сетки;

3. радиальный способ и способ совмещенных высот.

В каждом из этих способов построения перспективы используются различные елементы центрального проецирования. Выбор того или иного способа построений зависит от вида объекта и его объемно-пространствнной структуры.

Способ архитекторов основан на использовании точек схода перспектив горизонтальных параллельных прямых объектов и на практике используется для построения архитектурных перспектив.

Сущность радиального способа построения перспективы заключается в определении точек пересечения проецирующих лучей с картинной плоскостью. Этот способ находит применение главным образом при построении фронтальных перспектив улиц, внутренних дворов, фасадов зданий с выступающими вперед частями.

Сущность координатного метода заключается в построении перспективы объекта, отнесенного к прямоугольной системе координат. Координатный способ используется при изображении несложных объектов неправильной формы.

Способ перспективной сетки как разновидность координатного способа применяют при построении «планировочных» перспектив с высоким горизонтом при проектировании градостроительных и промышленных объектов, расположенных на значительной территории.

Мы рассмотрим один из них – метод архитектора. Этот способ сво­дится к определению проекций точек сооружения на картинную плоскость лучами, идущими из точек зрения к каждой точке сооружения.

При построении перспективы ме­тодом архитектора картинную пло­скость располагают под углом к зда­нию и проводят след ее через один из углов (рис.109).

Зрителя устанавли­вают так, чтобы главный луч зре­ния был перпендику­лярен картин­ной плоскости, а сам зритель находился бы на таком рас­стоянии, чтобы угол зрения , опре­деля­емый крайними лучами зре­ния S { и S 5 , был равен 23°...37". Главный луч зре­ния SP должен делить карти­ну приблизительно попо­лам, чтобы точ­ка Р на­хо­ди­лась в средней трети кар­тины.

Точки схода для ос­нов­ных направ­лений плана най­­дутся, если провести пря­мые из точки стояния S 1 па­рал­лельно сторонам со­ору­ж­ения до пере сечения с картинной плоскостью в точках F 1 и F 2 .

Точка схода F 1 (левая) будет яв­ляться точкой схода для всех прямых, параллельных сторонам 1-2, 3-4. 5-6, 8-9, а точка схода F 2 (правая) – для параллельных сторон 1-7, 11-10, 2-3, 4-5 и им параллельных.

После установки зрителя, картин­ной плоскости и нахождения точек схода проводятся лучи зрения из всех точек сооружения и на следе картин­ной плоскости КК фиксируются все точки пересечения 1 к.. .6 К и т.д.

Для построения самой перспективы переносим след картинной плоскости со всеми нанесенными на нем точками на то место, где будет строиться перспектива (рис.110).


Линию горизонта проводим па­раллельно основанию картинной пло­с­кос­ти КК на заданной высоте и на нее переносим точки схода с основа­ния картинной плоскости.

Так как картинная плоскость про­ведена через ребро 4, то оно в пер­спективе будет в натуральную длину. Из точки 4 к восставляем нерпендикуляр к следу картинной плоскости и на нем откладываем высоту ребра 4, взя­тую с фронтальной проекции ортого­нального чертежа.

Нижнюю и верхнюю точки ребра 4 соединяем с точками схода F 1 и F 2 . получая направление сторон здания. Восставляя перпендикуляры из точек 3к и 5 к до пересечения с лучами, иду­щими в точки схода, получим сторо­ны здания. Таким же образом нахо­дим все ребра и стороны сооружения в перспективе.

Для получения точек 8, 9, 10 к 11 в перспективе продолжим линии конька 11-10 (см. рис. 109) до пересечения с картинной плоскостью К К в точке N 1 , а линию 8-9 до пересечения в точке N и переносим эти точки в перспективу. Из полученных точек восставляем перпендикуляры, на ко­торых откладываем высоты от земли до конька.

Соединяя точки N 1 и N 2 с точками схода и пересекая полученные линии перпендикулярными прямыми, вос­ставленными из точек 11 к , 10 к 8 к и 9 К , получим перспективное изображение прямых 11-10 и 8-9, принадлежащих конькам кровли. Найденные точки соединяем, согласно ортогональному чертежу, с соответствующими точка­ми, получая перспективное изображе­ние кровли.

Чтобы сооружение не казалось ви­сящим в воздухе, необходимо около него начертить тротуар, дорогу и т.п., соблюдая при этом, чтобы все проведенные линии были направлены в точки схода.

4. ТЕНИ В ПЕРСПЕКТИВЕ

Так же как и в аксонометрии, тени в перспективе могут быть построены с различных точек расположения источника света.

На рис. 111 показаны восемь возможных расположений источников света относительно по­ло­же­ния точки зрения и двух вертикальных стерж­ней, от которых падает тень на горизон­таль­ную плоскость. Здесь те­ни от вершины стержней, т. е. от то­чек А и В, найдены как горизонталь­ные следы лу­чей света, прохо­дя­щие через данные точк­и. Из рассмотрен­ных примеров видно, что тени от вертикальных прямых падают по на­правлению точки схода на горизонте, а длина тени определяется пе­ре­сече­нием луча света, проходящего через верх­ний конец прямой в точку схода лучей, с по­верх­ностью, на ко­то­рую падает тень.

Направление лучей света может быть выбрано в зависимости от ха­рактера изображаемого объекта и от желания показать его освещенным с той или другой стороны. При этом следует руководствоваться эстетиче­скими соображениями, так как по­строение теней на проекте не является самоцелью, а всего лишь средством для выявления форм и пропорций.

В тех случаях, когда сооружение состоит из арок и колоннад, хорошо применять так называемые приходя­щие тени. В этом случае лучи света, проникающие сквозь проемы, соз­дают эффектную игру светотени.

Теперь определим расстояние d , на которое будет удалена на картине точка схода лучей света в пространстве F 4 от точки схода горизонталь­ных проекций лучей F 3 . Для этого предположим, что солнце расположе­но сзади и слева от зрителя, а лучи направлены вниз направо, составляя угол а = 35 ; 54". (В точке S строим угол а и находим катет d прямоугольного треугольника SF 3 F 4 , который и является искомой величиной, и его следует отложить на картине по вертикали вниз от точки F 3 горизонта. Все остальные построе­ния по нахождению теней ясны из чертежа. Для построения тени от здания, име­ющего выступ, мож­но рекомен­до­вать сле­­ду­ющий при­ем для выбора направ­ления лучей света. Рассмотрим по­стро­ение (рис.112). К уг­лу 4 выступа здания прикладываем линейку KN так, чтобы падающая от выступа тень на фа­сад 5-6 была или не­много меньше или немного больше пер­спек­тивного размера выступа 4-5. и, про­ве­дя по ребру линей­ки проек­цию луча света в плане, отыскиваем точку F 3 на оси ОХ как проекцию точки схода горизонтальных проек­ций лучей света (S l F 3 \\ KN ).

Рассмотрим построение падающих теней на ступенях лестницы от боковой стенки (рис.113). При построении теней в перспективе от здания обычно берут направление лучей, параллельное кар­тинной плоскости, в этом случае лучи и тени от вертикальных прямых бу­дут параллельными, последнее облег­чает построение теней на чертеже.

Для построения падающей тени от боковой стенки лестницы на ступенях использован прием продолжения реб­ра, от которого строится тень (в дан­ном случае ребро А В), до пересечения с той гранью, на которую строится падающая тень.


Вначале строим тень от верти­кальной прямой A 0 A 1 . для этого из основания А 0 проводим проекцию луча S 0 до подступенка первой ступе­ни, у основания которого тень пере­ломится и. как от вертикали, на вер­тикальной плоскости пойдет вверх до проступи. Дойдя до второго подсту­пенка, луч опять переломится и по вертикали поднимается на вторую ступень, далее по проступи луч пой­дет в направлении проекции луча S 0 до встречи с лучом S в точке К.

Теперь строим тень от наклонной А В, для этого продолжаем прямую А 1 В" до пересечения с прямой В 1 С 1 . принадлежащей верхней площадке Р. Тень от прямой А В 1 в точке 1 будет равна нулю, а прямая 1-В р даст тень на площадке Р от В до точки 4. Чтобы найти тень на проступи N , продолжаем А 1 В 1 до точки 2, лежа­щей в плоскости N . и отыскиваем в этой же плоскости тень от точки В 1 – это будет точка В N . При соединении точек 2 и B N прямая пересечет под­ступенок N в точках 5 и 6. Точка 7 на проступи М получается аналогично. Тень на подступенках II и III получит­ся от соединения точек 7 с 6 и 5 с 4.

Тень от прямой В 1 С 1 , так от гори­зонтальной прямой на горизонталь­ную плоскость ляжет по направлению луча, идущего в ту же точку схода, что и от точки В р до вертикальной стены, откуда тень пойдет в точку С 1 . Остальные построения ясны из чер­тежа.

На рис.114 дан пример построе­ния падающих теней лучами, парал­лельными картинной плоскости.

Искусственный источник света, как и всякая точка в перспективе, определяется на картине как перспектива самой светящейся точки и перспектива основания (см. рис. 9.22 ).

Источник света можно располагать в любом месте относительно освещаемого объекта. Это зависит от того, как пожелает художник использовать свет в композиции картины.

Длина тени зависит от высоты светящейся точки и ее расстояния до освещаемого предмета. Тень не должна вылезать за линию горизонта и за О -О . Если она выше горизонта – это мнимая тень. Следовательно, надо правильно выбирать источник света.

Если предмет освещается несколькими источниками света, то падающие тени накладываются одна на другую. Место наложения двух падающих теней называется полнойтенью . Несовпадающие части падающих теней называются полутенями . Сначала строят собственную тень, потом полутени, затем полную тень, но не черную, так как она освещается отраженным светом.

Пример 1. Построить падающую тень от вертикали при двух заданных источниках света (рис. 9.27 ).


Решение

1. Определяем границу собственной тени. При заданном положении источников света границей собственной тени будут ребра В" К В К и Е" К Е К , т. е. в собственной тени будут грани А" К А К В" К В К и А" К А К Е" К Е К .

2. Строим падающие тени от граней А" К А К В" К В К и А" К А К Е" К Е К сначала от первого источника света, а затем от второго.

3. Определяем границу полной тени и полутеней.

Пример 3. Построить собственную и падающую тени от вертикального цилиндра. Положение источника освещения задано перспективой и перспективой основания (рис. 9.29 ).

Решение

1. Определяем зону собственной тени. Из точки С" К (перспективы основания источника) проводим касательные к нижнему основанию цилиндра. Образующие цилиндра, проведенные из точек касания 1 К и 6 К , ограничат зону собственной тени.

2. Построим падающую тень. Для этого дугу основания цилиндра в неосвещенной части разобьем на произвольное количество участков произвольной длины точками 2" К , 3" К и т. д.

3. Проведем через эти точки образующие и построим тени от этих образующих. Линия 1 Т -2 Т -3 Т -4 Т -5 Т -6 Т ограничит зону падающей тени.



Построение теней в интерьере

При изображении интерьеров чаще всего применяют искусственное освещение. Солнечное освещение в интерьере используют только в том случае, если есть большие световые проемы (террасы). Если окна имеют обычные размеры, то световым «зайчиком» можно пренебречь.

Правило построения теней

Чтобы найти тень от точки, надо через источник света и точку провести луч и найти точку пересечения этого луча с плоскостью, на которую падает тень. Для этого решают задачу на пересечение прямой с плоскостью. Через световой луч проводим вспомогательную проецирующую плоскость: если тень на полу, то плоскость – горизонтально-проецирующая, если на вертикальных стенках, – фронтально-проецирующая.

Пример 1. Построить тень от вертикальных прямых на пол и боковую стенку помещения при заданном положении светящейся точки (рис. 9.30 ).

Решение . В этом примере удобно провести горизонтально-проецирующие лучевые плоскости. Горизонтальный след этих плоскостей будет проходить через перспективу основания источника света и перспективу основания точек А и В . Точка пересечения следа плоскости со световым лучом и дает тень от точки А на пол. Такое построение называется методом парусов.


9.3.4. Построение теней от предметов на различные поверхности
при естественном и искусственном освещении

Пример 1. Построить падающую тень от балкона на вертикальной стене при естественном освещении (рис. 9.32 ).



Решение

1. Определяем зону собственной тени. В собственной тени при заданном источнике освещения окажутся правая боковая стена балкона и нижняя часть пола.

2. Построим падающие тени от контура собственных теней. Для этого из точек B K , G K и L K проведем световые лучи под углом 45° и определим точки пересечения этих лучей с вертикальной стеной дома.

Чтобы определить точки пересечения световых лучей с вертикальной стеной, определим перспективы основания всех точек балкона на предметной плоскости (точки A" K , M" K , L" K , E" K , J" K , B" K , G" K ).

Через перспективы основания точек B" K , G" K , L" K проведем перспективы основания световых лучей до пересечения с вертикальной стеной (точки 1 и 2 ). Из точек 1 и 2 восставим перпендикуляры до пересечения со световыми лучами, проведенными из точек B" K , G" K , L" K . Соединим полученные точки B" K , G" K , L" K . Это будут тени от ребер B K G K , G K L K . Соединив В Т с Е К , получим тень от ребра L K М K .

Пример 2. Построить падающую тень от вертикали АВ на предметную плоскость Н и на поверхность усеченной призмы (рис. 9.33 ).

Решение . Поскольку точка В вертикали принадлежит предметной плоскости, тень точки В совпадает с самой точкой В . Таким образом, решение задачи сводится к построению тени от точки А .


1. Через перспективу точки А (А К ) и перспективу источника (С К ) провести перспективу светового луча. Точка (А Т ) – гипотетическое место нахождения тени от точки А на предметной плоскости, если бы на пути световых лучей не находилось бы препятствие.

2. Через перспективу основания точки А (А" К ) и перспективу основания источника (С" К ) провести перспективу основания светового луча.

3. Построить линию пересечения горизонтально-проецирующей плоскости световых лучей (плоскости САВ , проходящей через вертикаль АВ и источник освещения С ) с поверхностью усеченной призмы – линия 1 К 1" К 2" К 2 К .

4. Тень от вертикали АВ будет идти от тени точки В на предметную плоскость (совпадающей с самой точкой В ), вдоль перспективы основания светового луча до пересечения с поверхностью призмы (точка 1" К ). Далее – вдоль линии пересечения плоскости световых лучей с поверхностью призмы. Граничной точкой тени (А Т ) будет точка пересечения линии 1 К 1" К 2" К 2 К с перспективой светового луча.


Библиографический список

1. Макарова, М. Н. Перспектива / М. Н. Макарова. – М.: Академический проект, 2006.

2. Ивашина, Г. Г. Перспектива / Г. Г. Ивашина. – СПб.: СПбГХПА, 2005.

3. Соловьев, С. А. Черчение и перспектива / С. А. Соловьев. – М.: Высшая школа, 1967.

4. Котрубенко, М. Е. Сборник задач по курсу «Начертательная геометрия и технический рисунок» / М. Е. Котрубенко, О. К. Лескова, Л. Н. Карагезян. – СПб.: ИПЦ СПГУТД, 2006.


1. Основные понятия и определения………………...……… 2. Линейная перспектива на вертикальной картине... 2.1. Схема расположения элементов для построения перспективного изображения………………………………...……............................. 2.2. Выбор точки зрения. Линия горизонта и ее расположение в рамке картины………………………………………………........ 2.3. Перспектива точки………………………………………………..... 2.4. Перспектива прямой линии………………………………………... 2.5. Взаимное положение прямых в перспективе…………………….. 2.6. Построение перспективы параллельных прямых при недоступной точке схода…………………………………............................... 3. построение перспективы плоских фигур на эпюре.................................................................................................... 3.1. Перспектива точки…………………………………………………. 3.2. Перспектива углов………………………………………………..... 3.3. Перспектива четырехугольников…………………………………. 3.4. Перспектива окружности…………………………………….......... 4. перспективные масштабы………………………………......... 4.1. Масштаб глубины………………………………………………...... 4.2. Масштаб ширины………………………………………………....... 4.3. Масштаб высоты…………………………………………………… 4.4. Перспективный делительный масштаб для горизонтальных прямых, расположенных под произвольным углом к картине……… 5. ДЕЛЕНИЕ ОТРЕЗКА НА РАВНЫЕ И ПРоПОРЦИОНАЛЬНЫЕ ЧАСТИ............................................................................................................. 6. перспектива геометрических тел………………………… 7. перспектива интерьера………………………………………..... 7.1. Фронтальная перспектива…………………………………………. 7.2. Угловая перспектива……………………………………………...... 8. практические способы построения перспективы.. 9. ТЕНИ. Геометрические основы теории теней...........… 9.1. Тени в ортогональных проекциях………………………………… 9.2. Построение теней на аксонометрических проекциях…………..... 9.3. Тени в перспективе…………………………………………............ Библиографический список..............................................................................

Похожая информация.


Изучая правила и способы перспективного изображения явлений освещения, их обычно различают по признакам взаимного расположения лучей света: лучи света солнца и луны принимают за взаимно параллельные прямые, следовательно, в перспективе подчиняющиеся правилам о точках схода перспектив параллельных прямых; лучи света от лампы (светящейся точки), как известно, сходятся в одну точку (применение ламп дневного света, распространяющих лучи светящихся цилиндров, можно рассматривать, как случай освещения несколькими лампами).

Процесс изображения явлений освещения значительно упрощается, если художнику ясна форма как собственной тени на предмете, так и падающей от него на смежные предметы. Рассмотрим два отдельных вопроса: о построении и формах теней в аксонометрических проекциях на примерах тени от прямой линии, плоской фигуры и геометрических тел, которые помогут нам разъяснить общие правила построения теней и о правилах перспективного изображения явлений освещения. Эти правила основаны на следующих соображениях: при наблюдении теней, падающих на пол от вертикальных линий, в комнате, где висит у потолка одна лампа (рис. 16), мы заметим, во-первых, что все такие тени направляются в одну точку, расположенную на полу точно под лампой; во-вторых, легко убедиться, что длина тени от вертикальной линии на пол определяется точкой пересечения с полом луча света, проходящего через верхний конец вертикальной линии; повторяя наше наблюдение, но уже над направлением теней от прямых линий, перпендикулярных к стене комнаты, то есть горизонтальных, мы заметим, что они тоже направляются в одну точку (как и тени на полу) и что эта точка помещается как раз в том месте на стене, против которого висит лампа; точное положение этой точки можно определить, проводя мысленно из светящейся точки перпендикуляр на стену; на других стенах комнаты мы заметим точно такое же явление. Условимся называть отмеченные нами точки схода теней от прямых линий на полу или на стене прямоугольными проекциями источника света на ту плоскость, на которую падает тень. Следовательно, для обозначения на рисунке условий освещения необходимо указать две точки: самую светящуюся точку и ее проекцию на ту плоскость, на которую падает тень. В нашем примере таких проекций источника света будет пять: на пол, потолок и на три стены.

Построение отражений в зеркальной плоскости

На картине (рис. 17) изображен берег, по краю которого расположены фонари, невысокая изгородь и палатка. Сначала построим отражение вертикального края берега по точке А – а . Для этого от проекции точки а отложим равные по величине отрезка Аа = аА * . Затем построим отражение вертикальной плоскости набережной, проведя ее верхней край в точку схода F 2 .

Если предмет находится в глубине на горизонтальной плоскости земли, тогда применяют дополнительные построения. В данном примере вдоль набережной расположены осветительные фонари, которые удалены от ее края на некоторое расстояние. Построим их отражение в воде по ближнему фонарю B – b . Сначала проведем перпендикуляр к плоскости зеркала (воде), продолжив высоту каждого фонаря вниз под поверхность воды. Затем определим точку пересечения перпендикуляра с поверхностью воды. Для этого через него проведем дополнительную вертикальную плоскость (фронтальную или произвольно направленную) и построим линию пересечения фронтальной плоскости с поверхностью земли пройдет через основания фонаря b по прямой широт, край берега – по вертикальной линии и поверхности воды – по прямой широт. Пересечения перпендикуляра с этой прямой определит точку b 1 «касания» столба при его продолжении с поверхностью воды. Затем отложим от точки b 1 равные отрезки Bb 1 =b 1 B * .

Заметим, что основания и вершины всех фонарей находятся на воображаемых прямых, параллельных краю берега, поэтому они имеют с ним общую точку схода F 2 .

Таким же способом построим изгородь по вертикальной стойке E – e , но вспомогательную вертикальную плоскость проведем в направлении точки F 1 . Линия пересечения ее с поверхностью земли пройдет через основание стойки е и точку схода F 1 , край берега по вертикальной прямой и поверхность воды по прямой горизонтальной с точкой схода F 1 . Эта линия в пересечении с перпендикуляром определит искомую точку е 1 , отражение стойки Е – е 1 = е 1 – Е * и всей изгороди.

Построим отражение в воде палатки. Сначала продолжим все вертикальные ребра за плоскость зеркала и определим точку пересечения с водой I 1 только одного переднего ребра L – 1. Затем, отложив равное расстояние за поверхность воды LI 1 = IL * , построим отражение искомой точки L * F 1 и F 2 , которые будут отражением горизонтальных ребер данного объекта.

Для построения навеса достаточно определить отражение одной точки I , проведя горизонтальную прямую через точку L . Тогда параллельная ей горизонтальная прямая L * L при пересечении с вертикальной линией определит отражение точки I * . Через нее проведем горизонтальные прямые в точки схода F 1 и F 2 , которые будут отражением в воде краев навеса палатки.

Заметим, что в данном примере изображены силуэты зданий, расположенных вдали берега при значительном удалении от него.

При построении теней на перспективных чертежах за источник света принимается солнце, которое по отношению к картине может занимать различные положения:

1. солнце расположено позади предмета и тень падает в сторону наблюдателя (рис. 104);

Рис. 104. Солнце позади предмета

2. солнце расположено позади зрителя, тень падает в сторону линии горизонта от основания предмета (рис. 105);

Рис. 105. Солнце позади зрителя

3. солнце расположено сбоку так, что лучи идут параллельно картине (рис. 106).

Рис. 106. Солнце сбоку предмета

Последний случай чаще других применяется инженерами при построении перспективных изображениях зданий и сооружений, поэтому остановимся на нем более подробно.

Рассмотрим построение точки в перспективе. Будем считать, что объект освещается слева (или справа), лучи идут параллельно картине, составляя угол 45° с предметной плоскостью. Запишем эти условия символически:

1. S ∥k;

2. S ^ T = 45°.

Проведем через точку A (рис. 107) перспективу луча, а через ее вторичную проекцию (точку a ) – вторичную проекцию луча. Поскольку луч параллелен картине, его вторичная проекция параллельна основанию картины t t . Точка пересечения перспективы луча с его вторичной проекцией определит действительную тень точки А на земле – точку А Т .

Рис. 107. Тень точки в перспективе

Построим собственные и падающие тени параллелепипеда, стоящего на земле (рис. 108).

Заметим, что те выводы, которые были сформулированы ранее для построения теней в ортогональных проекциях, справедливы и для центральных.

Рис. 108. Построение теней параллелепипеда

Проанализируем освещенность граней параллелепипеда. При заданном направлении лучевого потока освещенными будут верхняя, левая видимая и невидимая на чертеже грани объекта. Остальные грани окажутся в собственной тени. Определим контур собственной тени данного тела. В его состав войдут ребра [12 ] – [23 ] – [34 ] – [45 ] – [56 ] – [61 ], составляющие замкнутую цепочку в виде пространственной ломаной линии. От выявленного контура строим падающую тень. Поскольку точка 1 лежит на земле 1 = 1 Т . Проведем через точку 2 перспективу луча, а через ее вторичную проекцию (точку 1 ) – его вторичную проекцию. На пересечении этих линий находим точку 2 Т . Поскольку ребро [23 ] параллельно предметной плоскости, его падающая тень равна и параллельна ему. Точка схода ребра [23 ] находится на линии горизонта (точка F 1 ). Соединяем точку 2 Т с этой точкой (т.е. проводим через нее прямую, параллельную этому ребру). На этой же прямой находится тень точки 3 . Проведем через точку 3 перспективу луча до пересечения с построенной прямой – определим точку 3 Т . Вторичную проекцию луча в этом случае строить не следует, поскольку искомая точка уже установлена пересечением двух линий. Ребро [34 ] также параллельно плоскости T , его тень параллельна ребру.

Точкой схода этих прямых – фокус F 1 . Проведя перспективу луча через точку 4 до пересечения с отрезком [3 Т F 1 ], определим точку 4 Т . Точки 5 и 6 расположены на предметной плоскости T , поэтому 5 = 5 Т и 6 = 6 Т . Очертание контура падающей тени параллелепипеда состоит из совокупности отрезков [1 Т 2 T ] – [2 Т 3 T ] – [3 Т 4 T ] – [4 Т 5 T ] – [5 Т 6 T ] – [3 Т 4 T ], представляющих собой замкнутый контур.

Рассмотрим задачи, связанные с построением перспективы и теней фрагментов зданий

З а д а ч а 1

Построить тени от прямых барьеров на лестнице, земле и стене (рис. 109).

Рис. 109. Лестница с прямыми барьерами

Вначале построим тени правого барьера (рис. 110). Поскольку при заданном направлении светового потока правая грань барьера находится в собственной тени легко видеть, что ребра, находящиеся на границе света и тени войдут в состав контура собственной тени. Определим падающую тень вертикального ребра. Точка А принадлежит Т , поэтому можно отметить, что А = А Т . Проведем через точку В перспективу луча, а через ее вторичную проекцию – точку А перспективу вторичной проекции луча. На пересечении построенных линий определим тень В Т . Другое ребро [BC ] параллельно предметной плоскости, следовательно, его тень параллельна ребру и имеет ту же точку схода F 2 . Реальная часть этой тени на земле – отрезок [В Т 1 Т ]. Поскольку точка 1 Т находится на границе земли и стены 1 Т = 1 Т " . С помощью обратного луча можно определить точку на ребре [BC ], которая отбросила эту тень. Точка С горизонтального ребра находится на стене, поэтому С = С Т " . Тень отрезка [1 C ] падает на стену. Его тенью является отрезок [1 Т " С Т " ].

Рис. 110. Построение контура падающей тени правого барьера

Контур собственной тени всегда замкнут. Рассуждения по его определению приводились во многих задачах. Элемент контура может совпадать со своей тенью (если, например, он находится на земле, стене или примыкает к другому объекту). Этот фактор следует учитывать при построении падающей тени.

У левого барьера правая грань находится в собственной тени, следовательно, ребра [LN ] и [LM ] входят в состав определяемого контура (рис. 111). Построим падающие тени этих ребер.

Рис. 111. Построение контура падающей тени левого барьера

Лучевая плоскость (фронтальная плоскость уровня), проходящая через ребро [LN ] пересекает землю и нижнюю ступеньку по параллельным прямым, оставляя на них теневые следы, а подступенок по вертикальной прямой. Верхняя точка L этого ребра отбрасывает тень на первую ступеньку и определяется пересечением луча с его вторичной проекцией. Ребро [LM ] параллельно плоскости нижней ступеньки, поэтому его тень параллельна ребру. Соединяет точку L Т с точкой схода F 2 и отмечаем реальную часть тени этого ребра на нижней ступеньке до точки 2 Т = 2 Т " . Заметим, что это ребро является гвоздем по отношению ко всем подступенкам. Проведем вспомогательные линии для нахождения общих точек для ребра [LM ] и граней всех подступенков. Эти построения позволят определить падающие тени на подступенки. На рис. 111 на ребре [LM ] отмечены все его участки, отбросившие тени на конкретные фрагменты лестницы, землю и стену.

Рис. 112. Собственные и падающие тени от прямых барьеров

На рис. 112. представлен окончательный вариант решения задачи.

Тени ребер [LM ] и [BC ] на стене и подступенках параллельны и представляют собой пример восходящих прямых . Их точка схода расположена выше линии горизонта, а точка схода их вторичных проекций лежит на линии горизонта.

З а д а ч а 2

Построить перспективу карниза крыши и определить собственные и падающие тени (рис. 113).

Рис. 113. Условие задачи 2

Укажем на ортогональном чертеже условия задачи положение картинной плоскости и выберем точку зрения в соответствии с рекомендациями, приведенными ранее.

Для решения задачи применим способ архитекторов и используем некоторые другие приемы построения перспективы. Определим начальные точки прямых доминирующих направлений и отметим их на перспективном чертеже на основании картины. Определим точки схода этих прямых.

Соединив начальные точки с соответствующими точками схода, получим перспективу плоской фигуры (плана карниза крыши). Проведем через точку зрения и точки 2 и 4 лучи, которые вместе с их вторичными проекциями задают горизонтально-проецирующие плоскости, пересекающие картину по вертикальным прямым (рис. 114).

Рис. 114. Применение двух методов построения перспективы

В соответствии с этими рассуждениями наперспективном чертеже

проведем через точки 2 1 и 4 1 вертикальные прямые, по которым пересекутся построенные плоскости с картиной. Ребро, попавшее в картинную плоскость, изобразится на ней в натуральную величину, взятую с ортогонального чертежа. Проведя через верхнюю и нижнюю точки этого ребра прямые в точки схода F 1 и F 2 , завершим построение двух боковых видимых граней карниза (рис. 115).

Рис. 115. Построение боковых граней карниза

с использованием способа конических сечений

Проведем две прямые через нижние точки вертикальных боковых ребер карниза в точки схода F 1 и F 2 , и выделим очертание нижней грани (рис.116).

Рис. 116. Проведение прямых, перпендикулярных картине

Для построения перспективы стен использованы прямые, перпендикулярные картине, проходящие через точки 5 , 6 и 8 .

Рис. 117. Построение видимых стен в перспективе

После нахождения вторичных проекций этих точек на перспективном чертеже проводим через них вертикальные линии (рис. 116).

Сдвинем одно из вертикальных ребер в картинную плоскость в любом направлении. Отложим на нем от основания картины от точки 5 0 натуральную величину ребра, взятую с ортогонального чертежа (рис. 117).

Проведем через верхнюю точку этого ребра прямую в точку схода F 2 . Обведем очертание правой стены. Затем построим параллельные прямые с точкой схода F 1 и обрисуем левую стену.

Рис. 118. Завершающий этап построения перспективы

На рис.118. показан окончательный результат построения перспективы сооружения.

Перейдем к построению теней. Определим освещенность граней объекта при заданном направлении светового потока и выделим его собственные тени. Построим падающую тень карниза крыши на стены. Найдем тень точки А на левой видимой стене. Проведем через точку А перспективу луча, а через а вторичную проекцию до пересечения с левой стеной. Заметим, что луч и ребро представляют собой скрещивающиеся линии. Пересечение проведенного луча со стеной произойдет в точке А Т " . Поскольку нижнее переднее ребро левой грани карниза параллельно левой стене, то тень от него пойдет по стене вправо от точки А Т " параллельно этому ребру. Поэтому через А Т " и точку схода F 1 проводим прямую.

В точке А сходятся три ребра карниза. Его левое нижнее ребро является гвоздем по отношению к левой стене. Определим тень этого ребра. На рис. 119 показано два варианта нахождения тени.

В первом случае (рис. 119, а ) на этом ребре строим с помощью обратного луча точку В , которая отбросит тень В Т " на левое вертикальное ребро. Тенью гвоздя является отрезок [А Т " В Т " ].

Во втором случае (рис. 119, б ) найдена общая точка для левой стены гвоздя . Для этого верхнее горизонтальное ребро левой стены продолжено до пересечения с гвоздем и отмечена точка С Т " . Поскольку отрезок [С Т " А Т " ] лежит в плоскости стены и пересекает ее левое вертикальное ребро, на нем можно отметить точку В Т " и выделить реальную часть тени гвоздя.

Оба приема дают одинаковый результат.

Рис. 119. Варианты нахождения падающей тени карниза

на стену здания:

а – с помощью точки B Т " ;

б – с помощью точки С Т " («основания» гвоздя на стене)

На рис. 120 приведена перспектива этого сооружения при выборе другой точкой зрения, при которой тень точки А падает на невидимую на картине стену. По отношению к этой стене ребро [АВ ] является гвоздем и частично отбрасывает на нее тень в виде отрезка [С Т " А Т " ]. На левой стене построена тень нижнего ребра видимой левой грани карниза.

Построение теней карниза на фрагменты сооружения выполнено в различных вариантах, поскольку вызывает трудности у студентов при выполнении работ.

Рис. 120. Построение тени карниза при измененной точке зрения

Построим падающую тень карниза на землю отдельно от нижней части сооружения (рис. 121), предварительно определив его контур собственной тени.

Рис. 121. Падающая тень карниза

Затем найдем контур собственной тени и определим контур падающей тени здания без учета карниза (рис. 122).

Обрисуем очертание общего контура падающей тени сооружения и выделим его цветом (рис. 123).

Рис. 122. Контуры падающих теней двух объектов

Рис. 123. Собственные и падающие тени объекта

Цвет падающей тени зависит от объекта, на котором она оказалась (на траве, асфальте и т. п.) и имеет более густой оттенок по сравнению с собственной тенью, как показано ни рисунке выше.

З а д а ч а 3

По заданным видам здания выполнить вид слева и построить собственные и падающие тени (рис.124).

Рис. 124. Условие к задаче 3

Покажем на плане здания положение картинной плоскости, точку зрения, точки схода параллельных прямых двух направлений и проведем вспомогательные прямые для построения перспективы (рис.125).

Рис. 125. Выбор картины и точки зрения на плане здания

Рис. 126. Перспектива видимых стен здания

Нанесем на основании картины начальные точки прямых. Построим перспективу видимых стен здания (рис. 126).

Сформируем нишу в стене фасада. Фрагменты ниши с линиями построения показаны на рис. 127.

Рис. 127. Перспективы фрагментов ниши

На ребре, лежащем в картинной плоскости, нанесем точки деления для построения окон и соединим их с точкой схода F 1 . Для построения вертикальных линий используем прямые, перпендикулярные к картине, с точкой схода P (рис.128).

Рис. 128. Формирование окон в перспективе

Через точки деления на нижней грани ниши проведены параллельные прямые с точкой схода F 2 . На задней грани ниши построены вертикальные прямые и обрисованы оконные отсеки (рис. 129).

Рис. 129. Фрагмент обрисовки окон

По нанесенным на плане линиям начинаем построение ступенек (рис. 130).

Рис. 130. Начало построения ступенек

По натуральным величинам вертикальных отрезков на картинной плоскости выполняем очертание профиля ступенек и правой части козырька (рис. 131).

Рис. 131. Построение профиля ступенек и части козырька

Строим левую часть лестницы и козырька (рис. 132).

Рис. 132. Построение левого фрагмента здания

На рис. 133. показан увеличенный фрагмент части козырька, на котором видна грань, находящаяся в собственной тени,

Рис. 133. Левая часть козырька

В приведенных выше рисунках на изображениях показывались собственные тени для полноценного восприятия чертежа. Объяснений по поводу их построений не приводилось, поскольку ранее было рассмотрено на эту тему достаточное количество задач.

Рис. 134. Построение падающей тени козырька на стену здания

Падающие тени козырька (рис.134) следует строить от тех ребер, которые находятся на границе света и тени. Эту границу (контур собственной тени) хорошо видно на рис. 135.

Рис. 135. Фрагмент козырька с собственной и падающей тенями

Элементами этого контура являются нижнее переднее ребро козырька, параллельное стене, и левое нижнее ребро, перпендикулярное стене. Точка А является общей для этих ребер. Для нахождения тени через нее проводим луч и строим его вторичную проекцию. Пересечение луча со стеной произойдет в точке А Т " . Проводим через эту точку прямую в точку схода F 1 . С помощью обратного луча определяем точку В на ребре, перпендикулярном стене, которая отбросит тень на левое ребро стены. Отрезок [А Т " В Т " ] – падающая тень гвоздя на стене.

На рис. 136 видно, что ребра профиля лестницы, параллельные земле, и их тени имеют общую точку схода F 2 , ребро [45 ] частично отбрасывает тень на стену, начиная от точки 6 , найденной с помощью обратного луча.

Рис. 136. Падающие тени от ступенек на земле и стене

Для нахождения тени козырька в нише можно поступить следующим образом. Вначале построить полное очертание падающей тени на стене без учета ниши (рис. 137). Определим тень точки А на плоскости стены (точку А " ). Соединим построенную точку с В Т " и изобразим реальную часть тени гвоздя на стене. Сместив точку А " вглубь ниши до совпадения с ее задней гранью найдем на ней тень точки А (точку А " ).

Можно было провести построения в обратном порядке. Вначале определить тень точки А в нише окна (точку А Т " ). Затем найти в ней тени вертикального и горизонтального ребер.

На рис. 138 видна тень на подоконнике и на оконных стеклах от переднего вертикального ребра боковой грани ниши.

Рис. 137. Падающая тень козырька на стене и в нише


Рис. 138. Фрагмент построения падающей тени козырька

В правой части рис.138 видно, что вторичная проекция луча, проходящая через точку а, пересекает вторичную проекцию задней грани ниши. Через точку пересечения проведена вертикальная прямая, на которой отмечена точка А Т " .

Рис. 139. Построение падающей тени здания на землю

При определении падающей тени здания (рис. 139) задействованы ребра, входящие в контур собственной тени. Это вертикальное ребро, находящееся в картинной плоскости, верхнее правое видимое ребро с точкой схода F 2 и верхнее невидимое ребро с точкой схода F 1 . Тени этих ребер на земле параллельны самим ребрам и имеют те же точки схода.

Рис. 140. Перспектива здания с собственными и падающими тенями

На завершенном изображении (рис. 140) показано, что падающие тени приобретают окраску той поверхности, на которую они отброшены, но тон окраски становится более густым.