Быстрота распространения колебаний в пространстве. Механические и звуковые волны. Основные положения

Для существования волны необходим источник колебания и материальная среда или поле, в которых эта волна распространяется. Волны бывают самой разнообразной природы, но они подчиняются аналогичным закономерностям.

По физической природе различают:

По ориентации возмущений различают:

Продольные волны -

Смещение частиц происходит вдоль направления распространения;

необходимо наличие в среде силы упругости при сжатии;

могут распространяться в любых средах.

Примеры: звуковые волны


Поперечные волны -

Смещение частиц происходит поперек направления распространения;

могут распростаняться только в упругих средах;

необходимо наличие в среде силы упругости при сдвиге;

могут распространяться только в твердых средах (и на границе двух сред).

Примеры: упругие волны в струне, волны на воде

По характеру зависимости от времени различают:

Упругие волны - механические возмещения (деформации), распространяющиеся в упругой среде. Упругая волна называется гармонической (синусоидальной), если соответствующие ей колебания среды являются гармоническими.

Бегущие волны - волны, переносящие энергию в пространстве.

По форме волновой поверхности : плоская, сферическая, цилиндрическая волна.

Волновой фронт - геометрическое место точек, до которых дошли колебания к данному моменту времени.

Волновая поверхность - геометрическое место точек, колеблющихся в одной фазе.

Характеристики волны

Длина волны λ - расстояние, на которое волна распространяется за время, равное периоду колебаний

Амплитуда волны А - амплитуда колебаний частиц в волне

Скорость волны v - скорость распространения возмущений в среде

Период волны Т - период колебаний

Частота волны ν - величина, обратная периоду

Уравнение бегущей волны

В процессе распространения бегущей волны возмущения среды доходят до следующих точек пространства, при этом волна переносит энергию и импульс, но не переносит вещество (частицы среды продолжают колебаться в том же месте пространства).

где v – скорость, φ 0 – начальная фаза, ω – циклическая частота, A – амплитуда

Свойства механических волн

1. Отражение волн механические волны любого происхождения обладают способностью отражаться от границы раздела двух сред. Если механическая волна, распространяющаяся в среде, встречает на своем пути какое-либо препятствие, то она может резко изменить характер своего поведения. Например, на границе раздела двух сред с разными механическими свойствами волна частично отражается, а частично проникает во вторую среду.

2. Преломление волн при распространении механических волн можно наблюдать и явление преломления: изменение направления распространения механических волн при переходе из одной среды в другую.

3. Дифракция волн отклонение волн от прямолинейного распространения, то есть огибание ими препятствий.

4. Интерференция волн сложение двух волн. В пространстве, где распространяются несколько волн, их интерференция приводит к возникновению областей с минимальным и максимальным значениями амплитуды колебаний

Интерференция и дифракция механических волн.

Волна, бегущая по резиновому жгуту или струне отражается от неподвижно закрепленного конца; при этом появляется волна, бегущая во встречном направлении.

При наложении волн может наблюдаться явление интерференции. Явление интерференции возникает при наложении когерентных волн.

Когерентными называют волны , имеющие одинаковые частоты, постоянную разность фаз, а колебания происходят в одной плоскости.

Интерференцией называется постоянное во времени явление взаимного усиления и ослабления колебаний в разных точках среды в результате наложения когерентных волн.

Результат суперпозиции волн зависит от того, в каких фазах накладываются друг на друга колебания.

Если волны от источников А и Б придут в точку С в одинаковых фазах, то произойдет усиление колебаний; если же – в противоположных фазах, то наблюдается ослабление колебаний. В результате в пространстве образуется устойчивая картина чередования областей усиленных и ослабленных колебаний.


Условия максимума и минимума

Если колебания точек А и Б совпадают по фазе и имеют равные амплитуды, то очевидно, что результирующее смещение в точке С зависит от разности хода двух волн.

Условия максимума


Если разность хода этих волн равна целому числу волн (т. е. четному числу полуволн) Δd = kλ , где k = 0, 1, 2, ..., то в точке наложения этих волн образуется интерференционный максимум.

Условие максимума :

А = 2x 0 .

Условие минимума


Если разность хода этих волн равна нечетному числу полуволн, то это означает, что волны от точек А и Б придут в точку С в противофазе и погасят друг друга.

Условие минимума:

Амплитуда результирующего колебания А = 0 .

Если Δd не равно целому числу полуволн, то 0 < А < 2х 0 .

Дифракция волн.

Явление отклонения от прямолинейного распространения и огибание волнами препятствий называется дифракцией.

Соотношение между длиной волны (λ) и размерами препятствия (L) определяет поведение волны. Дифракция наиболее отчетливо проявляется, если длина набегающей волны больше размеров препятствия. Опыты показывают, что дифракция существует всегда, но становится заметной при условии d<<λ , где d – размер препятствия.

Дифракция – общее свойство волн любой природы, которая происходит всегда, но условия её наблюдения разные.

Волна на поверхности воды распространяется в сторону достаточно большого препятствия, за которым образуется тень, т.е. волнового процесса не наблюдается. Такое свойство используется при устройстве волноломов в портах. Если же размеры препятствия сравнимы с длиной волны, то за препятствием будет наблюдаться волнение. Позади него волна распространяется так, как будто препятствия не было вовсе, т.е. наблюдается дифракция волны.

Примеры проявления дифракции . Слышимость громкого разговора за углом дома, звуки в лесу, волны на поверхности воды.

Стоячие волны

Стоячие волны образуются при сложении прямой и отраженной волны, если у них одинаковая частота и амплитуда.

В струне, закрепленной на обоих концах, возникают сложные колебания, которые можно рассматривать как результат наложения (суперпозиции ) двух волн, распространяющихся в противоположных направлениях и испытывающих отражения и переотражения на концах. Колебания струн, закрепленных на обоих концах, создают звуки всех струнных музыкальных инструментов. Очень похожее явление возникает при звучании духовых инструментов, в том числе органных труб.

Колебания струны . В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны , причем в местах закрепления струны должны располагаться узлы. Поэтому в струне возбуждаются с заметной интенсивностью только такие колебания, половина длины волны которых укладывается на длине струны целое число раз.

Отсюда вытекает условие

Длинам волн соответствуют частоты

n = 1, 2, 3... Частоты v n называются собственными частотами струны.

Гармонические колебания с частотами v n называются собственными или нормальными колебаниями . Их называют также гармониками. В общем случае колебание струны представляет собой наложение различных гармоник.

Уравнение стоячей волны :

В точках, где координаты удовлетворяют условию (n = 1, 2, 3, …), суммарная амплитуда равна максимальному значению – это пучности стоячей волны. Координаты пучностей :

В точках, координаты которых удовлетворяют условию (n = 0, 1, 2,…), суммарная амплитуда колебаний равна нулю – это узлы стоячей волны . Координаты узлов:

Образование стоячих волн наблюдают при интерференции бегущей и отраженных волн. На границе, где происходит отражение волны, получается пучность, если среда, от которой происходит отражение, менее плотная (a), и узел – если более плотная (б).

Если рассматривать бегущую волну , то в направлении ее распространения переносится энергия колебательного движения. В случае же стоячей волны переноса энергии нет , т.к. падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях.

Стоячие волны возникают, например, в закреплённой с обоих концов натянутой струне при возбуждении в ней поперечных колебаний. Причём в местах закреплений располагаются узлы стоячей волны.

Если стоячая волна устанавливается в воздушном столбе, открытом с одного конца (звуковая волна), то на открытом конце образуется пучность, а на противоположном – узел.

Волна – процесс распространения колебаний в упругой среде.

Механическая волна – механические возмущения, распространяющиеся в пространстве и несущие энергию.

Виды волн :

    продольные – частицы среды совершают колебания по направлению распространения волны – во всех упругих средах;

x

направление колебаний

точек среды

    поперечные – частицы среды совершают колебания перпендикулярно направлению распространения волны – на поверхности жидкости.

X

Виды механических волн:

    упругие волны – распространение упругих деформаций;

    волны на поверхности жидкости.

Характеристики волн:

Пусть А колеблется по закону:
.

Тогда В колеблется с запаздыванием на угол
, где
, т.е.

    Энергия волны.

- полная энергия одной частицы. Если частицN, то, где- эпсилон,V– объём.

Эпсилон – энергия в единице объёма волны – объёмная плотность энергии.

Поток энергии волн равен отношению энергии, переносимой волнами через некоторую поверхность, к времени, в течение которого этот перенос осуществлён:
, ватт; 1 ватт = 1Дж/с.

    Плотность потока энергии – интенсивность волны – поток энергии через единицу площади - величина, равная средней энергии, переносимой волной в единицу времени за единицу площади поперечного сечения.

[Вт/м 2 ]

.

Вектор Умова – векторI, показывающий направление распространения волн и равный потоку энергии волн, проходящему через единичную площадь, перпендикулярную этому направлению:

.

Физические характеристики волны :

    Колебательные:

    1. амплитуда

    Волновые:

    1. длина волны

      скорость волны

      интенсивность

Сложные колебания (релаксационные) – отличающиеся от синусоидальных.

Преобразование Фурье – любую сложную периодическую функцию можно представить суммой нескольких простых (гармонических) функций, периоды которых кратны периоду сложной функции – это гармонический анализ. Происходит в анализаторах. Итог – гармонический спектр сложного колебания:

А

0

Звук – колебания и волны, которые действуют на ухо человека и вызывают слуховое ощущение.

Звуковые колебания и волны – частный случай механических колебаний и волн. Виды звуков :

    Тоны – звук, являющийся периодическим процессом:

    1. простой – гармонический - камертон

      сложный – ангармонический – речь, музыка

Сложный тон может быть разложен на простые. Наименьшая частота такого разложения – основной тон, остальные гармоники (обертоны) – имеют частоты, равные 2и другие. Набор частот с указанием их относительной интенсивности – акустический спектр.

        Шум – звук со сложной неповторяющейся временной зависимостью (шорох, скрип, аплодисменты). Спектр – сплошной.

Физические характеристики звука :


Характеристики слухового ощущения :

    Высота – определяется частотой звуковой волны. Чем больше частота, тем выше тон. Звук большей интенсивности – более низкий.

    Тембр – определяется акустическим спектром. Чем больше тонов, тем богаче спектр.

    Громкость – характеризует уровень слухового ощущения. Зависит от интенсивности звука и частоты. Психофизическийзакон Вебера-Фехнера : если увеличивать раздражение в геометрической прогрессии (в одинаковое число раз), то ощущение этого раздражения возрастёт в арифметической прогрессии (на одинаковую величину).

, где Е – громкость (измеряется в фонах);
- уровень интенсивности (измеряется в белах). 1 бел – изменение уровня интенсивности, которое соответствует изменению интенсивности звука в 10 раз.K– коэффициент пропорциональности, зависит от частоты и интенсивности.

Зависимость между громкостью и интенсивностью звука – кривые равной громкости , построенные на экспериментальных данных (создают звук частотой 1 кГц, меняют интенсивность, пока не возникнет слуховое ощущение, аналогичное ощущению громкости исследуемого звука). Зная интенсивность и частоту можно найти фон.

Аудиометрия – метод измерения остроты слуха. Прибор – аудиометр. Полученная кривая – аудиограмма. Определяется и сравнивается порог слухового ощущения на разных частотах.

Шумометр – измерение уровня шума.

В клинике : аускультация – стетоскоп/фонендоскоп. Фонендоскоп – полая капсула с мембраной и резиновыми трубками.

Фонокардиография – графическая регистрация фонов и шумов сердца.

Перкуссия.

Ультразвук – механические колебания и волны с частотой выше 20кГц до 20 МГц. УЗ-излучатели – электромеханические излучатели, основанные на пьезоэлектрическом эффекте (переменный ток к электродам, между которыми - кварц).

Длина волны УЗ меньше длины волны звука: 1,4 м – звук в воде (1 кГц), 1,4 мм – ультразвук в воде (1 МГц). УЗ хорошо отражается на границе кость-надкостница – мышца. УЗ в тело человека не проникнет, если не смазать маслом (воздушный слой). Скорость распространения УЗ зависит от среды. Физические процессы: микровибрации, разрушение биомакромолекул, перестройка и повреждение биологических мембран, тепловое действие, разрушение клеток и микроорганизмов, кавитация. В клинике: диагностика (энцефалограф, кардиограф, УЗИ), физиотерапия (800 кГц), ультразвуковой скальпель, фармацевтическая промышленность, остеосинтез, стерилизация.

Инфразвук – волны с частотой меньше 20 Гц. Неблагоприятное действие – резонанс в организме.

Вибрации . Полезное и вредное действие. Массаж. Вибрационная болезнь.

Эффект Доплера – изменение частоты волн, воспринимаемых наблюдателем (приёмником волн), вследствие относительного движения источника волн и наблюдателя.

1 случай: Н приближается к И.

2 случай: И приближается к Н.

3 случай: приближение и отдаление И и Н друг от друга:

Система: генератор УЗ – приёмник – неподвижна относительно среды. Движется объект. Он принимает УЗ с частотой
, отражает её, посылая на приёмник, который получает УЗ волну с частотой
. Разница частот –доплеровский сдвиг частоты :
. Используется для определения скорости кровотока, скорости движения клапанов.

Лекция – 14. Механические волны.

2. Механическая волна.

3. Источник механических волн.

4. Точечный источник волн.

5. Поперечная волна.

6. Продольная волна.

7. Фронт волны.

9. Периодические волны.

10. Гармоническая волна.

11. Длина волны.

12. Скорость распространения.

13. Зависимость скорости волны от свойств среды.

14. Принцип Гюйгенса.

15. Отражение и преломление волн.

16. Закон отражения волн.

17. Закон преломления волн.

18. Уравнение плоской волны.

19. Энергия и интенсивность волны.

20. Принцип суперпозиции.

21. Когерентные колебания.

22. Когерентные волны.

23. Интерференция волн. а) условие интерференционного максимума, б) условие интерференционного минимума.

24. Интерференция и закон сохранения энергии.

25. Дифракция волн.

26. Принцип Гюйгенса – Френеля.

27. Поляризованная волна.

29. Громкость звука.

30. Высота тона звука.

31. Тембр звука.

32. Ультразвук.

33. Инфразвук.

34. Эффект Доплера.

1.Волна – это процесс распространения колебаний какой-либо физической величины в пространстве. Например, звуковые волны в газах или в жидкостях представляют собой распространение колебаний давления и плотности в этих средах. Электромагнитная волна – это процесс распространения в пространстве колебаний напряженности электрического магнитного полей.

Энергию и импульс можно переносить в пространстве путём переноса вещества. Любое движущееся тело обладает кинетической энергией. Следовательно оно переносит кинетическую энергию, перенося вещество. Это же тело будучи нагретым, перемещаясь в пространстве переносит энергию тепловую, перенося вещество.

Частицы упругой среды связаны между собой. Возмущения, т.е. отклонения от положения равновесия одной частицы передаются соседним частицам, т.е. энергия и импульс передаются от одной частицы соседним частицам, при этом каждая частица остаётся около своего положения равновесия. Таким образом, энергия и импульс передаются по цепочке от одной частице к другой и переноса вещества при этом не происходит.

Итак, волновой процесс есть процесс переноса энергии и импульса в пространстве без переноса вещества.

2. Механическая волна или упругая волна – возмущение (колебание), распространяющееся в упругой среде. Упругой средой, в которой распространяются механические волны, является воздух, вода, дерево металлы и другие упругие вещества. Упругие волны называют звуковыми волнами.

3. Источник механических волн – тело, совершающее колебательное движение, находясь в упругой среде, например колеблющиеся камертоны, струны, голосовые связки.

4. Точечный источник волн – источник волны, размерами которого можно пренебречь по сравнению с расстоянием, на которое распространяется волна.

5. Поперечная волна – волна, в которой частицы среды колеблются в направлении перпендикулярном к направлению распространения волны. Например, волны на поверхности воды – поперечные волны, т.к. колебания частиц воды происходят в направлении перпендикулярном направлению к поверхности воды, а волна распространяется по поверхности воды. Поперечная волна распространяется вдоль шнура, один конец которого закреплён, другой совершает колебания в вертикальной плоскости.

Поперечная волна может распространяться лишь по границе раздела дух разных сред.

6. Продольная волна – волна, в которой колебания происходят в направлении распространения волны. Продольная волна возникает в длинной спиральной пружине, если один её конец подвергается периодическим возмущениям, направленным вдоль пружины. Упругая волна, бегущая вдоль пружины представляет собой распространяющиеся последовательности сжатия и растяжения (Рис. 88)

Продольная волна может распространяться только внутри упругой среды например, в воздухе, в воде. В твёрдых телах и в жидкостях могут распространяться одновременно как поперечные, так и продольные волны, т.к. твёрдое тело и жидкость всегда ограничены поверхностью – поверхностью раздела двух сред. Например, если стальной стержень ударить в торец молотком, то в нём начнёт распространяться упругая деформация. По поверхности стержня побежит поперечная волна, а внутри него будет распространяться волна продольная (сжатия и разрежения среды) (Рис.89).

7. Фронт волны (волновая поверхность) – геометрическое место точек, колеблющихся в одинаковых фазах. На волновой поверхности фазы колеблющихся точек в рассматриваемый момент времени имеют одно и тоже значение. Если в спокойное озеро бросить камень, то по поверхности озера от места его падения начнут распространяться поперечные волны в виде окружности, с центром в месте падения камня. В этом примере фронт волны представляет собой окружность.

В сферической волне фронт волны есть сфера. Такие волны порождаются точечными источниками.

На очень больших расстояниях от источника можно пренебречь кривизной фронта и считать фронт волны плоским. В этом случае волна называется плоской.

8. Луч – прямая линиянормальная к волновой поверхности. В сферической волне лучи направлены вдоль радиусов сфер от центра, где расположен источник волн (Рис.90).

В плоской волне лучи направлены перпендикулярно к поверхности фронта (Рис. 91).

9. Периодические волны. Рассуждая о волнах мы подразумевали однократное возмущение, распространяющееся в пространстве.

Если же источник волн совершает непрерывные колебания, то в среде возникают бегущие одна за одной упругие волны. Такие волны называют периодическими.

10. Гармоническая волна – волна, порождаемая гармоническими колебаниями. Если источник волн совершает гармонические колебания, то он порождает гармонические волны – волны в которых частицы колеблются по гармоническому закону.

11. Длина волны. Пусть гармоническая волна распространяется вдоль оси OX, а колебания в ней происходят в направлении оси OY. Эта волна поперечная и её можно изобразить в виде синусоиды (Рис.92).

Такую волну можно получить, вызывая колебания в вертикальной плоскости свободного конца шнура.

Длиной волны называют расстояние между двумя ближайшими точками А и В, колеблющимися в одинаковых фазах (Рис. 92).

12. Скорость распространения волны – физическая величина численно равная скорости распространения колебаний в пространстве. Из Рис. 92 следует, что время за которое колебание распространяется от точки до точки А до точки В , т.е. на расстояние длины волны равно периоду колебаний. Поэтому скорость распространения волны равна



13. Зависимость скорости распространения волны от свойств среды . Частота колебаний при возникновении волны зависит только от свойств источника волны и не зависит от свойств среды. От свойств среды зависит скорость распространения волны. Поэтому длина волны изменяется при переходе границы раздела двух разных сред. Скорость волны зависит от связи между атомами и молекулами среды. Связь между атомами и молекулами в жидкостях и твёрдых телах значительно более жесткая, чем в газах. Поэтому скорости звуковых волн в жидкостях и твёрдых телах значительно больше, чем в газах. В воздухе скорость звука при нормальных условиях равна 340 , в воде 1500 , а в стали 6000 .

Средняя скорость теплового движения молекул в газах с понижением температуры уменьшается и как следствие скорость распространения волны в газах уменьшается. В среде более плотной, а следовательно более инертной, скорость волны меньше. Если звук распространяется в воздухе то его скорость зависит от плотности воздуха. Там, где плотность воздуха больше, там скорость звука меньше. И наоборот там, где плотность воздуха меньше там скорость звука больше. Вследствие этого при распространении звука фронт волны искажается. Над болотом или над озером особенно в вечернее время плотность воздуха вблизи поверхности из- за водяных паров больше чем на некоторой высоте. Поэтому скорость звука вблизи поверхности воды меньше, чем на некоторой высоте. Вследствие этого фронт волны разворачивается таким образом, что верхняя часть фронта всё больше изгибается в направлении к поверхности озера. Получается так, что энергия волны идущей вдоль поверхности озера и энергия волны идущей под углом к поверхности озера складываются. Поэтому в вечернее время звук хорошо распространяется на озером. Даже тихий раговор можно услышать, стоя на противоположном берегу.

14. Принцип Гюйгенса – каждая точка поверхности, которой достигла в данный момент волна является источником вторичных волн. Проведя поверхность касательную к фронтам всех вторичных волн, получим фронт волны в следующий момент времени.

Рассмотрим для примера волну, распространяющуюся по поверхности воды из точки О (Рис.93) Пусть в момент времени t фронт имел форму окружности радиуса R с центром в точке О . В следующий момент времени каждая вторичная волна будет иметь фронт в форме окружности радиуса , где V – скорость распространения волны. Проведя поверхность касательную к фронтам вторичных волн, получим фронт волны в момент времени (Рис. 93)

Если волна распространяется в сплошной среде, то фронт волны представляет собой сферу.

15. Отражение и преломление волн. При падении волны на поверхность раздела двух различных сред каждая точка этой поверхности согласно принципу Гюйгенса становится источником вторичных волн, распространяющихся по обе стороны от поверхности радела. Поэтому при переходе границы раздела двух сред волна частично отражается и частично проходит через эту поверхность. Т.к. среды различные, то и скорость волн в них различна. Поэтому при переходе границы раздела двух сред направление распространения волы изменяется, т.е. происходит преломление волны. Рассмотрим на основе принципа Гюйгенса процесс и законы отражения и преломления полн.

16. Закон отражения волн . Пусть на плоскую поверхность раздела двух различных сред падает плоская волна. Выделим в ней участок между двумя лучами и (Рис.94)

Угол падения – угол - между лучом падающим и перпендикуляром к поверхности раздела в точке падения.

Угол отражения – угол между лучом отраженным и перпендикуляром к поверхности раздела в точке падения.

В момент когда, луч достигнет поверхности раздела в точке , эта точка станет источником вторичных волн. Фронт волны в этот момент отмечен отрезком прямой АС (Рис.94). Следовательно, лучу еще предстоит в этот момент пройти до поверхности раздела путь СВ . Пусть луч проходит этот путь за время . Падающий и отраженный лучи распространяются по одну сторону о поверхности раздела поэтому их скорости одинаковы и равны V. Тогда .

За время вторичная волна из точки А пройдёт путь . Следовательно . Прямоугольные треугольники и равны, т.к. - общая гипотенуза и катеты . Из равенства треугольников и следует равенство углов . Но и , т.е. .

Теперь сформулируем закон отражения волн: луч падающий, луч отраженный , перпендикуляр к границе раздела двух сред, восставленный в точке падения лежат в одной плоскости; угол падения равен углу отражения .

17. Закон преломления волн . Пусть через плоскую границу раздела двух сред проходит плоская волна. Причём угол падения отличен от нуля (Рис.95).

Угол преломления – угол между лучом преломлённым и перпендикуляром к границе раздела, восставленным в точке падения.

Обозначим и скорости распространения волн в средах 1 и 2. В тот момент, когда луч достигнет границы раздела в точке А , эта точка станет источником волн, распространяющихся во второй среде – луч , а лучу ещё предстоит пройти путь до поверхности радела. Пусть - время, за которое луч проходит путь СВ, тогда . За это же время во второй среде луч пройдёт путь . Т.к. , то и .

Треугольники и прямоугольные с общей гипотенузой , и = , как углы с взаимно перпендикулярными сторонами. Для углов и запишем следующие равенства

.

Учитывая, что , , получим

Теперь сформулируем закон преломления волн: Луч падающий, луч преломлённый и перпендикуляр к границе раздела двух сред, восставленный в точке падения, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и называется относительным показателем преломления для двух данных сред.

18. Уравнение плоской волны. Частицы среды, находящиеся на расстоянии S от источника волн начинают колебаться только тогда, когда до неё дойдет волна. Если V есть скорость распространения волны, то колебания начнутся с опозданием на время

Если источник волн колеблется по гармоническому закону то для частицы, находящейся на расстоянии S от источника, закон колебаний запишем в виде

.

Введём величину , называемую волновым числом. Оно показывает, сколько длин волн укладывается на расстоянии равном единиц длины. Теперь закон колебаний частицы среды находящейся на расстоянии S от источника запишем в виде

.

Это уравнение определяет смещение колеблющейся точки, как функции времени и расстояния от источника волн и называется уравнением плоской волны.

19. Энергия и интенсивность волны . Каждая частица, до которой дошла волна колеблется и следовательно обладает энергией. Пусть в некотором объёме упругой среды распространяется волна с амплитудой А и циклической частотой . Это значит, что средняя энергия колебаний в этом объёме равна

Где m – масса выделенного объёма среды.

Средняя плотность энергии (средняя по объёму) есть энергия волны в единице объёма среды

, где плотность среды.

Интенсивность волны – физическая величина, численно равная энергии, которую переносит волна за единицу времени через единицу площади плоскости перпендикулярной к направлению распространения волны (через единицу площади фронта волны), т.е.

.

Средняя мощность волны есть средняя полная энергия, переносимая волной за единицу времени через поверхность с площадью S . Среднюю мощность волны получим, умножив интенсивность волны на площадь S

20.Принцип суперпозиции (наложения). Если в упругой среде распространяются волны от двух и более источников, то как показывают наблюдения, волны проходят одна через другую совершенно не влияя друг на друга. Иными словами волны не взаимодействуют друг с другом. Это объясняется тем что в пределах в пределах упругой деформации сжатия и растяжения в одном направлении никоим образом не влияют на упругие свойства по другим направлениям.

Таким образом, каждая точка среды куда приходят две и более волны принимает участие в колебаниях, вызванных каждой волной. При этом результирующее смещение частицы среды в любой момент времени равно геометрической суммой смещений, вызываемых каждым из складывающихся колебательных процессов. В этом и состоит суть принципа суперпозиции или наложения колебаний.

Результат сложения колебаний зависит от амплитуды, частоты и разности фаз складывающихся колебательных процессов.

21. Когерентные колебания – колебания с одинаковой частотой и постоянной в времени разностью фаз.

22.Когерентные волны – волны одинаковой частоты или одинаковой длины волны, разность фаз которых в данной точке пространства остаётся постоянной во времени.

23.Интерференция волн – явление увеличения или уменьшения амплитуды результирующей волны при наложении двух и более когерентных волн.

а) .Условия интерференционного максимума. Пусть волны от двух когерентных источников и встречаются в точке А (Рис.96).

Смещения частиц среды в точке А , вызванные каждой волной в отдельности запишем согласно уравнению волны в виде

где и , , - амплитуды и фазы колебаний, вызванных волнами в точке А , и - расстояния точки, - разность эти расстояний или разность хода волн.

Из-за разности хода волн вторая волна запаздывает по сравнению с первой. Это значит, что фаза колебаний в первой волне опережает фазу колебаний во второй волне, т.е. . Их разность фаз остается постоянной во времени.

Для того, чтобы в точке А частицы совершали колебания с максимальной амплитудой, гребни обеих волн или их впадины должны достигнуть точки А одновременно в одинаковых фазах или с разностью фаз равной , где n – целое число, а - есть период функций синуса и косинуса,

Здесь , поэтому условие интерференционного максимума запишем в виде

Где - целое число .

Итак, при наложении когерентных волн амплитуда результирующего колебания максимальна, если разность хода волн равна целому числу длин волн.

б) Условие интерференционного минимума . Амплитуда результирующего колебания в точке А минимальна, если в эту точку одновременно придут гребень и впадина двух когерентных волн. Это значит, сто волны придут в эту точку в противофазе, т.е. разность их фаз равна или , где целое число.

Условие интерференционного минимума получим, проведя алгебраические преобразования:

Таким образом, амплитуда колебаний при наложении двух когерентных волн минимальна, если разность хода волн равна нечетному числу полуволн.

24. Интерференция и закон сохранения энергии. При интерференции волн в местах интерференционных минимумов энергия результирующих колебаний меньше, чем энергия интерферирующих волн. Но в местах интерференционных максимумов энергия результирующих колебаний превышает сумму энергий интерферирующих волн настолько, насколько уменьшилась энергия в местах интерференционных минимумов.

При интерференции волн энергия колебаний перераспределяется в пространстве, но закон сохранения строго выполняется.

25.Дифракция волн – явление огибания волной препядствия, т.е. отклонение от прямолинейного распространения волн.

Дифракция особенно хорошо заметна в случае, когда размеры препядствия меньше длины волны или сравнимы с ней. Пусть на пути распространения плоской волны расположен экран с отверстием, диаметр которого сравним с длиной волны (Рис. 97).

По принципу Гюйгенса каждая точка отверстия становится источником таких же волн. Размер отверстия настолько мал, что все источники вторичных волн расположены так близко друг к другу, что их все можно считать одной точкой – одним источником вторичных волн.

Если на пути волны поставить препядствие, размер которого сравним с длиной волны, то края по принципу Гюйгенса становятся источником вторичных волн. Но размеры препядствия настолько малы, что края его можно считать совпадающими, т.е. само препядствие является точечным источником вторичных волн (Рис.97).

Явление дифракции легко наблюдается при распространении волн по поверхности воды. Когда волна достигает тонкой, неподвижной палочки, она становится источником волн (Рис. 99).

25. Принцип Гюйгенса-Френеля. Если же размеры отвепстия значительно превышают длину волны, то волна, проходя отверстие распространяется прямолинейно (Рис.100).

Если размеры препядствия значительно превышают длину волны, то за препядствием образуется зона тени (Рис.101). Эти опыты противоречат принципу Гюйгенса. Французский физик Френель дополнил принцип Гюйгенса представлением о когерентости вторичных волн. Каждая точка, в которую пришла волна становится источником таких же волн, т.е. вторичных когерентных волн. Поэтому волны отсутствуют только в тех местах, в которых для вторичных волн выполняются условия интерференционного минимума.

26. Поляризованная волна – поперечная волна, в которой колебания всех частиц происходят в одной плоскости. Если свободный конец шнура совершает колебания в одной плоскости, то по шнуру распространяется плоскополяризованная волна. Если свободный конец шнура совершает колебания в различных направлениях, то волна распрстраняющаяся по шнуру не пеоляризована. Если на пути неполяризованной волны поставить препядствие в виде узкой щели, то после прохождении щели волна становится поляризованной, т.к. щель пропускает колебания шнура, происходящие вдоль неё.

Если на пути поляризованной волны поставить вторую щель параллельную первой, то волна свободно пройдет через неё (Рис.102).

Если же вторую щель расположить под прямым углом по отношению к первой, то распространение волы прекратится. Устройство, которое выделяет колебания, происходящие в одной определённой плоскости называется поляризатором (первая щель). Устройство, которое определяет плоскость поляризации называется анализатором.

27.Звук – это процесс распространения сжатий и разрежений в упругой среде например, в газе, жидкости или в металлах. Распространение сжатий и разрежений происходит в результате столкновения молекул.

28. Громкость звука это сила воздействия звуковой волны на барабанную перепонку человеческого уха, которая от звукового давления.

Звуковое давление – это дополнительное давление, возникающее в газе или жидкости при распространении звуковой волны. Звуковое давление зависит от амплитуды колебании источника звука. Если заставить звучать камертон лёгким ударом, то мы получим одну громкость. Но, если камертон ударить сильнее, то амплитуда его колебаний увеличится и он зазвучит громче. Таким образом громкость звука определяется амплитудой колебании источника звука, т.е. амплитудой колебаний звукового давления.

29. Высота тона звука определяется частотой колебаний. Чем больше частота звука, тем выше тон.

Звуковые колебания происходящие по гармоническому закону воспринимаются как музыкальный тон. Обычно звук это сложный звук, который представляет собой совокупность колебаний с близкими частотами.

Основной тон сложного звука – это тон соответствующий наименьшей частоте в наборе частот данного звука. Тоны соответствующие остальным частотам сложного звука называются обертонами.

30. Тембр звука . Звуки одним и тем же основным тоном различаются тембром, который определяется набором обертонов.

У каждого человека свой только ему присущий тембр. Поэтому мы всегда можем отличить голос одного человека от голоса другого человека, даже в том случае, когда их основные тоны одинаковы.

31.Ультразвук . Человеческое ухо воспринимает звуки, частоты которых заключены в пределах от 20Гц до 20000Гц.

Звуки с частотами более 20000Гц называются ультразвуками. Ультразвуки распространяются в виде узких пучков и используются в гидролокации и дефектоскопии. С помощью ультразвука можно определить глубину морского дна и обнаружить дефекты в различных деталях.

Например, если рельс не имеет трещин, то ультразвук испущенный из одного конца рельса, отразившись от другого его конца даст только одно эхо. Если же есть трещины, то ультразвук будет отражаться от трещин и приборы будут фиксировать несколько эхо. С помощью ультразвука обнаруживают подводные лодки, косяки рыб. Летучая мышь ориентируется в пространстве с помощью ультразвука.

32. Инфразвук – звук с частотой ниже 20Гц. Эти звуки воспринимаются некоторыми животными. Их источником часто бывают колебания земной коры при землетрясениях.

33. Эффект Доплера – это зависимость частоты воспринимаемой волны от движения источника или приёмника волн.

Пусть на поверхности озера покоится лодка и волны бьются о её борт с некоторой частотой . Если лодка начнёт движение против направления распространения волн, то частота ударов волн о борт лодки станет больше. Причём, чем больше скорость лодки, тем больше частота ударов волн о борт. И наоборот при движении лодки в направлении распространения волн частота ударов станет меньше. Эти рассуждения легко понять из Рис. 103.

Чем больше скорость встречного движения, тем меньшее время затрачивается на прохождение расстояния между двумя ближайшими гребнями, т.е. тем меньше период волны и тем больше частота волны относительно лодки.

Если же наблюдатель неподвижен, но движется источник волн, то частота волны воспринимаемая наблюдателем зависит от движения источника.

Пусть по неглубокому озеру по направлению к наблюдателю идет цапля. Каждый раз, когда она опускает ногу в воду от этого места кругами расходятся волны. И каждый раз расстояние между первой и последней волнами уменьшается, т.е. на меньшем расстоянии укладывается большее число гребней и впадин. Поэтому для неподвижного наблюдателя по направлению к которому идет цапля частота увеличивается. И наоборот для неподвижного наблюдателя, находящегося в диаметрально противоположной точке на большем расстоянии столько же гребней и впадин. Поэтому для этого наблюдателя частота уменьшается (Рис.104).

Волны. Общие свойства волн.

Волна - это явление распространения в пространстве с течением времени изменения (возмущения) физической величины переносящее с собой энергию.

Независимо от природы волны перенос энергии осуществляется без переноса вещества; последнее может возникнуть лишь как побочный эффект. Перенос энергии - принципиальное отличие волн от колебаний, в которых происходят лишь «местные» преобразования энергии. Волны же, как правило, способны удаляться на значительные расстояния от места своего возникновения. По этой причине волны иногда называют «колебанием, оторвавшимся от излучателя ».

Волны можно классифицировать

По своей природе:

Упругие волны - волны, распространяющиеся в жидких, твёрдых и газообразных средах за счёт действия упругих сил.

Электромагнитные волны - распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля.

Волны на поверхности жидкости - условное название разнообразных волн, возникающих на поверхности раздела между жидкостью и газом или жидкостью и жидкостью. Волны на воде различаются принципиальным механизмом колебания (капиллярный, гравитационный и т. д.), что приводит к различным законам дисперсии и, как следствие, к различному поведению этих волн.

По отношению к направлению колебаний частиц среды:

Продольные волны - частицы среды колеблются параллельно по направлению распространения волны (как, например, в случае распространения звука).

Поперечные волны - частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред).

а - поперечные; б - продольные.

Волны смешанного типа.

По геометрии фронта волны:

Волновая поверхность (фронт волны) - геометрическое место точек, до которых дошло возмущение к данному моменту времени. В однородной изотропной среде скорость распространения волны одинакова по всем направлениям, значит, все точки фронта колеблются в одной фазе, фронт перпендикулярен направлению распространения волны, значения колеблющейся величины во всех точках фронта одинаковы.

Плоская волна - плоскости фаз перпендикулярны направлению распространения волны и параллельны друг другу.

Сферическая волна - поверхностью равных фаз является сфера.

Цилиндрическая волна - поверхность фаз напоминает цилиндр.

Спиральная волна - образуется в случае, если сферический или цилиндрический источник/источники волны в процессе излучения движется по некоторой замкнутой кривой.

Плоская волна

Волна называется плоской, если ее волновые повеpхности пpедставляют собой паpаллельные дpугдpугу плоскости, пеpпендикуляpные фазовой скоpости волны Если кооpдинатную ось х напpавить вдоль фазовой скоpости волны v, то вектоpy, описывающий волну, будет пpедставлять собой функцию только двух пеpеменных: кооpдинаты х и вpемени t (y = f(x,t)).

Рассмотpим плоскую монохроматическую (одна частота)синусоидальную волну, распространяющуюся в однородной среде без затухания вдоль оси X. Если источник (бесконечная плоскость) колеблется по закону y=, то до точки с координатой x колебание дойдет с запозданием на время .следовательно,

,где

Фазовая скоpость волны – скорость движения волновой поверхности (фронта),

– амплитуда волны – модуль максимального отклонения изменяющейся величины от положения равновесия,

– циклическая частота, T– период колебания, – частота волны(аналогично колебаниям)

k- волновое число, имеет смысл пространственной частоты,

Еще одной характеристикой волны является длина волны м, это расстояние, на которое волна распространяется за время одного периода колебания , онаимеетсмысл пространственного периода, это кратчайшее расстояние между точками, колеблющимися в одной фазе.


y

Длина волны связана с волновым числом соотношением , что аналогично временному соотношению

Волновое число связано с циклической частотой и скоростью распространения волны


x
y
y

На рисунках представлены осциллограмма (а) и моментальный снимок (б) волны с указанными временным и пространственным периодами. В отличие от стационарного колебания волны имеют две основные характеристики: временну́ю периодичность и пространственную периодичность.

Общие свойства волн:


  1. Волны переносят энергию.
Интенси́вность волны́ - средняя по времени энергия, которую электромагнитная или звуковая волна переносит в единицу времени через единицу площади поверхности, расположенной перпендикулярно к направлению распространения волны. Интенсивность волны пропорциональна квадрату её амплитуды.I=W/t∙S, где W- энергия,t-время, S-площадь фронта. I=[Вт/м2]. Также интенсивность любой волны может быть определена I=wv, где v - скорость распространения волны (групповая).

2. Волны оказывают давление на тела (обладают импульсом).

3. Скорость волны в среде зависит от частоты волны – дисперсия.Таким образом, волны разных частот распространяются в одной и той же среде с различной скоростью (фазовая скорость).

4. Волны огибают препятствия – дифракция.

Дифракция наблюдается, если размер препятствия сравним с длиной волны.

5. На границе раздела двух сред волны отражаются и преломляются.

Угол падения равен углу отражения, а отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред.


6. При наложении когерентных волн (разность фаз этих волн в любой точке постоянна во времени) они интерферируют – образуется устойчивая картина минимумов и максимумов интерференции.

Волны и возбуждающие их источники называются когерентными, если разность фаз волн не зависит от времени. Волны и возбуждающие их источники называются некогерентными, если разность фаз волн изменяется с течением времени.

Интерферировать могут только волны, имеющие одинаковую частоту, в которых колебания совершаются вдоль одного и того же направления (т. е. когерентные волны). Интерференция бывает стационарной и нестационарной. Стационарную интерференционную картину могут давать только когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну. Фронтом результирующей волны будет сфера.

При интерференции волн не происходит сложения их энергий. Интерференция волн приводит к перераспределению энергии колебаний между различными близко расположенными частицами среды. Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

При наложении некогерентных волн средняя величина квадрата амплитуды результирующей волны равна сумме квадратов амплитуд накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий ее колебаний, обусловленных всеми некогерентными волнами в отдельности.

7. Волны поглощаются средой. По мере удаления от источника амплитуда волны уменьшается, так как энергия волны частично передается среде.

8. Волны рассеиваются в неоднородной среде.

Рассеивание - возмущения волновых полей, вызываемые неоднородностями среды и помещёнными в эту среду рассеивающими объектами. Интенсивность рассеяния зависит от размера неоднородностей и частоты волны.

Механические волны. Звук. Характеристика звука .

Волна - возмущение, распространяющееся в пространстве.

Общие свойства волн:


  • переносят энергию;

  • обладают импульсом (оказывают давление на тела);

  • на границе двух сред отражаются и преломляются;

  • поглощаются средой;

  • дифракция;

  • интерференция;

  • дисперсия;

  • скорость волн зависит от среды, через которую проходят волны.

  1. Механические(упругие) волны.
Если в каком-нибудь месте упругой (твердой, жидкой или газообразной) среды возбуждены колебания частиц, то вследствие взаимодействия атомов и молекул среды колебания начинают передаваться от одной точки к другой с конечной скоростью зависящей от плотности и упругих свойств среды. Такое явление называется механической или упругой волной. Заметим, что механические волны не могут распространяться в вакууме.

Частный случай механических волн - волны на поверхности жидкости , волны, возникающие и распространяющиеся по свободной поверхности жидкости или на поверхности раздела двух несмешивающихся жидкостей. Они образуются под влиянием внешнего воздействия, в результате которого поверхность жидкости выводится из равновесного состояния. При этом возникают силы, восстанавливающие равновесие: силы поверхностного натяжения и тяжести.

Механические волны бывают двух видов


Продольные волны, сопровождаемые деформациями растяжения и сжатия, могут распространяться в любых упругих средах: газах, жидкостях и твердых телах. Поперечные волны распространяются в тех средах, где появляются силы упругости при деформации сдвига, т. е. в твердых телах.

Значительный интерес для практики представляют простые гармонические или синусоидальные волны. Уравнение плоской синусоидальной волны имеет вид:

– так называемое волновое число ,

круговая частота ,

А – амплитуда колебания частиц.

На рисунке изображены «моментальные фотографии» поперечной волны в два момента времени: t и t + Δt. За время Δt волна переместилась вдоль оси OX на расстояние υΔt. Такие волны принято называть бегущими.

Длиной волны λ называют расстояние между двумя соседними точками на оси OX, колеблющимися в одинаковых фазах. Расстояние, равное длине волны λ, волна пробегает за периодТ, следовательно,

λ = υT, где υ – скорость распространения волны.

Для любой выбранной точки на графике волнового процесса (например, для точки A) с течением времени t изменяется координата x этой точки, а значение выражения ωt – kx не изменяется. Через промежуток времени Δt точка A переместится по оси OX на некоторое расстояние Δx = υΔt. Следовательно: ωt – kx = ω(t + Δt) – k(x + Δx) = const или ωΔt = kΔx.

Отсюда следует:

Таким образом, бегущая синусоидальная волна обладает двойной периодичностью – во времени и пространстве. Временной период равен периоду колебаний T частиц среды, пространственный период равен длине волны λ. Волновое число является пространственным аналогом круговой частоты .


  1. Звук.
Звук – это распространяющиеся в упругих средах – газах, жидкостях и твёрдых телах – механические колебания, воспринимаемые органами слуха. Звук - волна с достаточно низкой интенсивностью.Диапазон слышимыхзвуковых частот лежит в пределах приблизительно от 20 Гц до 20 кГц. Волны с частотой менее 20 Гц называются инфразвуком , а с частотой более 20 кГц – ультразвуком . Волны с частотами от до Гц называются гиперзвуком . Изучением звуковых явлений занимается раздел физики, который называют акустикой.

Любой колебательный процесс описывается уравнением. Выведено оно и для звуковых колебаний:

Основные характеристики звуковых волн



Субъективное восприятие звука

(громкость, высота, тембр)



Объективные физические характеристики звука

(скорость, интенсивность, спектр)



Скорость звука в любой газообразной среде вычисляется по формуле:

β - адиабатическая сжимаемость среды,

ρ - плотность.


  1. Применение звука
Хорошо известны животные, обладающие способностью к эхолокации - летучие мыши и дельфины. По своему совершенству эхолокаторы этих животных не уступают, а во многом и превосходят (по надежности, точности, энергетической экономичности) современные эхолокаторы, созданные человеком.

Эхолокаторы, используемые под водой, называются гидролокаторами или сонарами (название sonar образован из начальных букв трех английских слов: sound - звук; navigation - навигация; range - дальность). Сонары незаменимы при исследованиях морского дна (его профиля, глубины), для обнаружения и исследования различных объектов, движущихся глубоко под водой. При их помощи могут быть легко обнаружены как отдельные большие предметы или животные, так и стаи небольших рыб или моллюсков.

Волны ультразвуковых частот широко используются в медицине в диагностических целях. УЗИ-сканеры позволяют исследовать внутренние органы человека. Ультразвуковое излучение менее вредно для человека, чем рентгеновское.

Электромагнитные волны.

Их свойства.

Электромагнитная волна - это электромагнитное поле, распространяющееся в пространстве с течением времени.

Электромагнитные волны могут возбуждаться только ускоренно движущимися зарядами.

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Он предложил новую трактовку закона электромагнитной индукции Фарадея и развил его идеи дальше.

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле, изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Рисунок 1. Переменное электрическое поле порождает переменное магнитное поле и наоборот

Свойства электромагнитных волн на основе теории Максвелла:

Электромагнитные волны поперечны – векторы и перпендикулярны друг другу и лежат в плоскости, перпендикулярной направлению распространения.

Рисунок 2. Распространение электромагнитной волны

Электрическое и магнитное поля в бегущей волне изменяются в одной фазе.

Векторыв бегущей электромагнитной волне образуют так называемую правую тройку векторов.

Колебания векторов ипроисходят синфазно: в один и тот же момент времени, в одной точке пространства проекции напряженностей электрического и магнитного полей достигают максимума, минимума или нуля.

Электромагнитные волны распространяются в веществе с конечной скоростью

Где - диэлектрическая и магнитная проницаемость среды (от них зависит скорость распространения электромагнитной волны в среде),

Электрическая и магнитная постоянные.

Скорость электромагнитных волн в вакууме



Плотностью потокаэлектромагнитной энергии или интенсивностью J называют электромагнитную энергию, переносимую волной за единицу времени через поверхность единичной площади:

,


Подставляя сюда выражения для , и υ, и учитывая равенство объемных плотностей энергии электрического и магнитного полей в электромагнитной волне, можно получить:

Электромагнитные волны могут быть поляризованы.

Так же электромагнитные волны обладают всеми основными свойствами волн : переносят энергию, обладают импульсом, они отражаются и преломляются на границе раздела двух сред, поглощаются средой, проявляют свойства дисперсии, дифракции и интерференции.

Опыты Герца (экспериментальное обнаружение электромагнитных волн)

Впервые электромагнитные волны были экспериментально изучены

Герцем в 1888г. Он разработал удачную конструкцию генератора электромагнитных колебаний (вибратор Герца) и метод обнаружения их способом резонанса.

Вибратор состоял из двух линейных проводников, на концах которых имелись металлические шарики, образующие искровой промежуток. При подаче от индукционной к тушки высокого напряжения в промежутке проскакивала искра, она закорачивала промежуток. За время ее горения, в контуре совершалось большое количество колебаний. Приемник (резонатор) состоял из проволоки с искровым промежутком. Наличие резонанса выражалось в возникновении искр в искровом промежутке резонатора в ответ на искру, возникающую в вибраторе.

Таким образом, опыты Герца подвели прочную основу под теорию Максвелла. Электромагнитные волны, предсказанные Максвеллом, оказались реализованными на опыте.

ПРИНЦИПЫ РАДИОСВЯЗИ

Радиосвязь – передача и прием информации с помощью радиоволн.

24 марта 1896 г. на заседании физического отделения Российского физико-химического общества Попов при помощи своих приборов наглядно продемонстрировал передачу сигналов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц».

СХЕМА ПРИЕМНИКА А.С.ПОПОВА

Попов использовал радиотелеграфную связь (передача сигналов разной длительности), такая связь может осуществляться только с помощью кода. В качестве источника радиоволн использовался искровой передатчик с вибратором Герца, а приемником служил когерер, стеклянная трубка с металлическими опилками, сопротивление которой при попадании на нее электромагнитной волны падает в сотни раз. Для увеличения чувствительности когерера один его конец заземлялся, а другой присоединялся к поднятой над Землей проволоке, общая длина антенны четверть длины волны. Сигнал искрового передатчика быстро затухает и не может быть передан на большие расстояния.

Для радиотелефонной связи (передача речи и музыки) используется высокочастотный модулированный сигнал. Сигнал низкой (звуковой) частоты несет в себе информацию, но практически не излучается, а сигнал высокой частоты излучается хорошо, но информацию не несет. Для радиотелефонной связи используют модуляцию.

Модуляция – процесс установления соответствия между параметрами ВЧ и НЧ сигнала.

В радиотехнике применяется несколько видов модуляций: амплитудная, частотная, фазовая.

Амплитудная модуляция - изменение амплитуды колебаний (электрических, механических и др.), происходящее с частотой, намного меньшей, чем частота самих колебаний.

Гармоническое колебание высокой частоты ω модулировано по амплитуде гармоническим колебанием низкой частоты Ω (τ = 1/Ω - его период), t - время, A - амплитуда высокочастотного колебания, T - его период.

Схема радиосвязи с помощью АМ сигнала

Генератор с амплитудной модуляцией

Амплитуда ВЧ сигнала изменяется в соответствием с амплитудой НЧ сигнала, затем модулированный сигнал излучается передающей антенной.

В радиоприемнике приемная антенна улавливает радиоволны, в колебательном контуре за счет резонанса выделяется и усиливается тот сигнал, на частоту которого настроен контур (несущая частота передающей станции), затем нужно выделить низкочастотную составляющую сигнала.

Детекторный радиоприемник

Детектирование – процесс преобразования высокочастотного сигнала в сигнал низкой частоты. Полученный после детектирования сигнал соответствует тому звуковому сигналу, который действовал на микрофон передатчика. После усиления колебания низкой частоты могут быть превращены в звук.

Детектор (демодулятор)

Диод служит для выпрямления переменного тока

а) АМ сигнал, б) детектированный сигнал

РАДИОЛОКАЦИЯ

Обнаружение и точное определение местонахождения объектов и скорости их движения с помощью радиоволн называется радиолокацией . В основе принципа радиолокации лежит свойство отражения электромагнитных волн от металлов.

1 - вращающаяся антенна; 2 - антенный переключатель; 3 - передатчик; 4 - приемник; 5 - блок развертки; 6 - индикатор расстояния; 7 - индикатор направления.

Для радиолокации используются высокочастотные радиоволны (УКВ), с их помощью легко формируется направленный пучок и высока мощность излучения. В метровом и дециметровом диапазоне – решетчатые системы вибраторов, в сантиметровом и миллиметровом – параболические излучатели. Локация может вестись как в непрерывном (для обнаружения цели), так и в импульсном (для определения скорости движения объекта) режиме.

Области применения радиолокации:


  • Авиация, космонавтика, флот: безопасность движения судов при любой погоде и в любое время суток, предотвращение их столкновения, безопасность взлета и. посадки самолетов.

  • Военное дело: своевременное обнаружение самолетов или ракет противника, автоматическая корректировка зенитного огня.

  • Радиолокация планет: измерение расстояния до них, уточнение параметров их орбит, определение периода вращения, наблюдение рельефа поверхности. В бывшем Советском Союзе (1961)-радиолокация Венеры, Меркурия, Марса, Юпитера. В США и Венгрии (1946)-эксперимент по приему сигнала, отраженного от поверхности Луны.
ТЕЛЕВИДЕНИЕ

Схема телесвязи в принципе совпадает со схемой радиосвязи. Разница в том, что, кроме звукового сигнала передается изображение и сигналы управления (смена строки и смена кадра) для синхронизации работы передатчика и приемника. В передатчике эти сигналы модулируются и передаются, в приемнике улавливаются антенной и идут для обработки каждый в свой тракт.

Рассмотрим одну из возможных схем преобразования изображения в электромагнитные колебания с помощью иконоскопа:

С помощью оптической системы на мозаичный экран проецируется изображение, за счет фотоэффекта ячейки экрана приобретают различный положительный заряд. Электронная пушка формирует электронный пучок, который перемещается по экрану, разряжая положительно заряженные ячейки. Так как каждая ячейка – конденсатор, то изменение заряда приводит к появлению изменяющегося напряжения – электромагнитное колебание. Затем сигнал усиливается и поступает в модулирующее устройство. В кинескопе видеосигнал обратно преобразуется в изображение (по-разному в зависимости от принципа работы кинескопа).

Так как телевизионный сигнал несет намного больше информации, чем радио, то работа ведется на высоких частотах (метры, дециметры).

Распространение радиоволн.
Радиоволна – это электромагнитная волна в диапазоне (10 4

Каждый участок этого диапазона применяется там, где лучше всего могут быть использованы его преимущества. Радиоволны различных диапазонов распространяются на различные расстояния. Распространение радиоволн зависит от свойств атмосферы. Земная поверхность, тропосфера и ионосфера также оказывают сильное влияние на распространение радиоволн.


Распространение радиоволн – это процесс передачи электромагнитных колебаний радиодиапазона в пространстве от одного места к другому, в частности от передатчика к приёмнику.
Волны различной частоты ведут себя по-разному. Рассмотрим подробнее особенности распространения длинных, средних, коротких и ультракоротких волн.
Распространение длинных волн.

Длинные волны (>1000 м) распространяются:


  • На расстояния до 1-2 тысяч км за счёт дифракции на сферической поверхности Земли. Способны обогнуть Земной шар (рис 1). Затем их распространение происходит за счёт направляющего действия сферического волновода, не отражаясь.

Рис. 1

Качество связи:

Стабильность приёма. Качество приёма не зависит от времени суток, года, погодных условий.

Недостатки:

Из-за сильного поглощения волны при ее распространении над земной поверхностью требуется большая антенна и мощный передатчик.

Атмосферные разряды (молнии) создают помехи.

Использование:


  • Диапазон используется для радиовещания, для радиотелеграфной связи, радионавигационных служб и для связи с подводными лодками.

  • Работает небольшое число радиостанций, передающих сигналы точного времени и метеорологические сводки.
Распространение средних волн

Средние волны ( =100..1000 м) распространяются:


  • Как и длинные волны, способны огибать земную поверхность.

  • Как и короткие волны, так же могут многократно отражаться от ионосферы.
На больших расстояниях от передатчика днём приём может быть плохим, ночью приём улучшается. Сила приёма зависит также от времени года. Таким образом, днём они распространяются как короткие, а ночью - как длинные.

Качество связи:


  • Небольшая дальность связи. Средневолновые станции слышны в пределах тысячи километров. Но наблюдается большой уровень атмосферных и промышленных помех.
Использование:

  • Используются для служебной и любительской связи, а также главным образом для вещания.
Распространение коротких волн

Короткие волны (=10..100 м) распространяются:


  • Многократно отражаясь от ионосферы и поверхности земли (рис.2)


Качество связи:

Качество приёма на коротких волнах очень сильно зависит от различных процессов в ионосфере, связанных с уровнем солнечной активности, временем года и временем суток. Не требуется передатчиков большой мощности. Для связи между наземными станциями и космическими аппаратами они непригодны, так как не проходят сквозь ионосферу.

Использование:


  • Для связи на большие расстояния. Для телевидения, радиовещания и радиосвязи с подвижными объектами. Работают ведомственные телеграфные и телефонные радиостанции. Этот диапазон, является самым «населенным».
Распространение ультракоротких волн

Ультракороткие волны (


  • Иногда они могут отражаться от облаков, искусственных спутников земли или даже от Луны. При этом дальность связи может несколько увеличится.
Качество связи:

Прием ультракоротких волны характерен постоянством слышимости, отсутствием замирании, а также уменьшением различных помех.

Связь на этих волнах возможна только на расстоянии прямой видимости L (рис. 7).


Так как ультракороткие волны не распространяются за горизонт, возникает необходимость строить множество промежуточных передатчиков – ретрансляторов.

Ретранслятор - устройство, располагающееся на промежуточных пунктах линий радиосвязи, усиливающее принимаемые сигналы и передающее их дальше.

Ретрансляция - прием сигналов на промежуточном пункте, их усиление и передача в прежнем или в другом направлении. Ретрансляция предназначена для увеличения дальности связи.

Существует два способа ретрансляции: спутниковая и наземная.

Спутниковая:

Активный спутник ретрансляции принимает сигнал наземной станции, усиливает его, и через мощный направленный передатчик отправляет сигнал на Землю в прежнем или в другом направлении.



Наземная:

Сигнал передается наземной аналоговой или цифровой радиостанции или сеть таких станций, а затем отправляется дальше в прежнем или в другом направлении.


1 – радиопередатчик,

2 – передающая антенна, 3 – приемная антенна, 4 – радиоприемник.

Использование:


  • Для связи с искусственными спутниками Земли и
космическими ракетами. Широко используются для теле- и радиовещания (диапазоны УКВ и FM), радионавигации, радиолокации и сотовой связи.

УКВ разделяются на следующие диапазоны:

метровые волны - от 10 до 1 метра, используются для телефонной связи между судами, судами и портовыми службами.

дециметровые - от 1 метра до 10 см, используются для спутниковой связи.

сантиметровые - от 10 до 1см, используются в радиолокации.

миллиметровые - от 1см до 1мм, используются в основном в медицине.