Изготовление органа музыкальный инструмент. Музыкальный инструмент орган – как возникает звук органа. Устройство лабиальной трубы

Алексей Надёжин: «Орга́н - самый большой и сложный музыкальный инструмент. Фактически, орган это целый духовой оркестр, а каждый из его регистров - отдельный музыкальный инструмент со своим звучанием.

В Светлановском зале Московского Международного Дома Музыки установлен самый большой орган в России. Мне посчастливилось увидеть его с той стороны, с которой его очень мало, кто видел.
Этот орган изготовлен в 2004 году в Германии консорциумом фирм Glatter Gotz и Klais, считающимися флагманами органостроения. Орган разрабатывался специально для Московского Международного Дома Музыки. У органа 84 регистра (в обычном органе количество регистров редко превышает 60) и более шести тысяч труб. Каждый регистр - отдельный музыкальный инструмент со своим звучанием.
Высота органа - 15 метров, вес - 30 тонн, стоимость - два с половиной миллиона евро.


О том, как устроен орган, мне рассказал доцент кафедры акустики МГУ Павел Николаевич Кравчун, являющийся главным смотрителем органов Московского международного Дома музыки и принимавший участие в разработке этого инструмента.


У органа пять клавиатур - четыре ручные и одна ножная. Удивительно, но ножная клавиатура вполне полноценна и некоторые простые произведения можно исполнять одними ногами. На каждом мануале (ручной клавиатуре) по 61 клавише. Справа и слева - ручки включения регистров.


Хоть орган и выглядит совершенно традиционным и аналоговым, на самом деле он частично управляется компьютером, который прежде всего запоминает пресеты - наборы регистров. Переключаются они кнопками на торцах мануалов.


Пресеты сохраняются на обычной 1.44″ дискете. Конечно, в компьютерной технике дисководы уже почти не используются, но тут он исправно работает.


Для меня было открытием узнать, что каждый органист является импровизатором, ведь в нотах или совсем не указывается набор регистров или указываются общие пожелания. Во всех органах общий только базовый набор регистров, а их количество и тональность могут сильно отличаться. Только лучшие исполнители могут быстро адаптироваться к огромному набору регистров органа Светлановского зала и использовать его возможности в полной мере.
Помимо ручек, у органа есть рычаги, переключаемые ногами и педали. Рычаги включают и отключают различные функции, управляемые компьютером. Например, объединение клавиатур и эффект нарастания, управляемый вращающейся педалью-роликом, по мере вращения которого подключаются дополнительные регистры и звук становится насыщенней и мощнее.
Для улучшения звучания органа (а заодно и других инструментов) в зале смонтирована электронная система Constellation, включающая множество микрофонов и миниколонок-мониторов на сцене, опускающихся с потолка на тросах с помощью моторов и множества микрофонов и колонок в зале. Это не система звукоусиления, при её включении звук в зале не становится громче, он становится равномернее (зрители на боковых и дальних местах начинают слышать музыку так же хорошо, как зрители в партере), кроме того может добавляться реверберация, улучшающая восприятие музыки.


Воздух, с помощью которого звучит орган, подаётся тремя мощными, но очень тихими вентиляторами.


Для равномерной его подачи используются… обычные кирпичи. Они прижимают меха. Когда вентиляторы включены, меха раздуваются, а вес кирпичей обеспечивает необходимое давление воздуха.


Воздух подаётся в орган по деревянным трубам. Удивительно, но большинство заслонок, заставляющих трубы звучать, управляются чисто механически - тягами, длина некоторых из которых превышает десять метров. Когда к клавиатуре подключено много регистров, органисту бывает очень нелегко продавить клавиши. Конечно же, в органе есть система электрического усиления, при включении которой клавиши нажимаются легко, но высококлассные органисты старой школы всегда играют без усиления - ведь только так можно менять интонации, изменяя скорость и силу нажатия клавиш. Без усиления орган - чисто аналоговый инструмент, с усилением - цифровой: каждая труба может только звучать или молчать.
Так выглядят тяги, идущие от клавиатур к трубам. Они деревянные, так как дерево наименее подвержено температурному расширению.


Внутрь органа можно зайти и даже пролезть по маленькой «пожарной» лестнице по его этажам. Внутри очень мало места, поэтому по фотографиям сложно ощутить масштабы конструкции, но всё же я попробую показать вам, то что увидел.


Трубы отличаются по высоте, толщине и форме.


Некоторые трубы деревянные, некоторые металлические из оловянно-свинцового сплава.


Перед каждым большим концертом орган настраивается заново. Процесс настройки занимает несколько часов. Для настройки концы самых маленьких труб немного развальцовываются или завальцовываются специальным инструментом, у труб побольше есть регулировочный стержень.


У больших труб есть вырезанный лепесток, который может немного откручиваться и закручиваться для настройки тона.


Самые большие трубы издают инфразвук от 8 Гц, самые маленькие - ультразвук.


Уникальной особенностью органа ММДМ является наличие горизонтальных труб, обращённых в зал.


Предыдущий кадр я сделал с маленького балкончика, на который можно выйти изнутри органа. Он служит для настройки горизонтальных труб. Вид зрительного зала с этого балкончика.


Небольшое количество труб имеет только электропривод.


А ещё у органа есть два звукоизобразительных регистра или «спецэффекта». Это «колокольчики» - звон семи колокольчиков подряд и «птички» - чириканье птичек, происходящее благодаря воздуху и дистиллированной воде. Павел Николаевич демонстрирует, как работают «колокольчики».


Удивительный и очень сложный инструмент! Система Constellation отправляется в режим парковки, а я на этом заканчиваю рассказ о самом большом музыкальном инструменте нашей страны.



Источник: « В мире науки» , №3, 1983. Авторы: Невиль Х. Флетчер и Сусанна Туэйтс

Величественное звучание органа создаётся благодаря взаимодействию строго синхронизированных по фазе воздушной струи, проходящей через разрез в трубе, и воздушного столба, резонирующего в её полости.

Ни один музыкальный инструмент не может сравниться с органом по силе, тембру, диапазону, тональности и величественности звучания. Подобно многим музыкальным инструментам, устройство органа постоянно совершенствовалось благодаря усилиям многих поколений искусных мастеров, медленно накапливавших опыт и знания. К концу XVII в. орган в основном приобрёл свою современную форму. Два наиболее выдающихся физика XIX в. Герман фон Гельмгольц и лорд Рэлей выдвинули противоположные теории, объясняющие основной механизм образования звуков в органных трубах , но из-за отсутствия необходимых приборов н инструментов их спор так и не был решён. С появлением осциллографов н других современных приборов стало возможным детальное изучение механизма действия органа. Оказалось, что как теория Гельмгольца, так и теория Рэлея справедливы для определённых величин давления, под которым воздух нагнетается в органную трубу. Далее в статье будут изложены результаты последних исследований, которые во многом не совпадают с объяснением механизма действия органа, приводимым в учебниках.

Трубки, вырезанные из камыша или других растений с полым стеблем, были, вероятно, первыми духовыми музыкальными инструментами. Они издают звуки, если дуть поперёк открытого конца трубки, или дуть в трубку, вибрируя губами, или, защемив конец трубки, вдувать воздух, заставляя вибрировать её стенки. Развитие этих трёх видов простейших духовых инструментов привело к созданию современной флейты, трубы и кларнета, из которых музыкант может извлекать звуки в довольно большом диапазоне частот.

Параллельно создавались и такие инструменты, в которых каждая трубка предназначалась для звучания на одной определённой ноте. Простейший из таких инструментов – это свирель (или «флейта Пана»), которая обычно имеет около 20 трубок различной длины, закрытых с одного конца и издающих звуки, если дуть поперёк другого, открытого конца. Самым большим и сложным инструментом этого типа является орган, содержащий до 10000 труб, которыми органист управляет при помощи сложной системы механических передач. Орган ведёт своё происхождение из глубокой древности. Глиняные фигурки, изображавшие музыкантов, играющих на инструменте из многих труб, снабжённых мехами, были изготовлены в Александрии ещё во II в. до н.э. К X в. орган начинает использоваться в христианских церквях, и в Европе появляются написанные монахами трактаты об устройстве органов. По преданию, большой орган , построенный в Xв. для Винчестерского собора в Англии, имел 400 металлических труб, 26 мехов и две клавиатуры с 40 клавишами, где каждая клавиша управляла десятью трубами. На протяжении последующих столетий устройство органа совершенствовалось в механическом и музыкальном отношении, и уже в 1429 г. в Амьенском соборе был построен орган, имевший 2500 труб. В Германии к концу XVII в. органы уже приобрели свою современную форму.

Орган, установленный в 1979 г. в концертном зале Сиднейского оперного театра в Австралии, является самым большим и технически совершенным органом в мире. Спроектирован и построен Р. Шарпом. В нем имеется около 10500 труб, управляемых с помощью механической передачи пятью ручными и одной ножной клавиатурами. Орган может управляться автоматически магнитной лентой, на которой в цифровой форме ранее было записано исполнение музыканта.

Термины, применяемые для описания устройства органа , отражают их происхождение от трубчатых духовых инструментов, в которые воздух вдувался ртом. Трубы органа сверху открыты, а снизу имеют суженную конусообразную форму. Поперёк сплющенной части, над конусом, проходит «ротик» трубы (разрез). Внутри трубы помешен «язычок» (горизонтальное ребро), так что между ним и нижней «губой» образуется «лабиальное отверстие» (узкая щель). Воздух нагнетается в трубу большими мехами и поступает в её конусообразное основание под давлением от 500 до 1000 паскалей (от 5 до 10 см вод. ст.). Когда при нажатии соответствующей педали и клавиши воздух входит в трубу, он устремляется вверх, образуя при выходе из лабиальной щели широкую плоскую струю. Струя воздуха проходит поперёк прорези «ротика» и, ударяясь о верхнюю губу, взаимодействует с воздушным столбом в самой трубе; в результате создаются устойчивые колебания, которые и заставляют трубу «говорить». Сам по себе вопрос, каким образом происходит в трубе этот внезапный переход от молчания к звучанию, очень сложен и интересен, но в данной статье он не рассматривается. Разговор в основном будет идти о процессах, которые обеспечивают непрерывное звучание органных труб и создают их характерную тональность.

Органная труба возбуждается воздухом, поступающим в её нижний конец и образующим струю при прохождении через щель между нижней губой и язычком. В разрезе струя взаимодействует с воздушным столбом в трубе у верхней губы и проходит то внутри трубы, то вне её. В воздушном столбе создаются установившиеся колебания, заставляющие трубу звучать. Давление воздуха, изменяющееся по закону стоячей волны, показано цветной штриховкой. На верхний конец трубы насаживается съемная муфта или заглушка, которые позволяют при настройке слегка изменять длину воздушного столба.

Может показаться, что задача описания воздушной струи, порождающей и сохраняющей звучание органа, полностью относится к теории потоков жидкостей и газов. Выяснилось, однако, что весьма трудно теоретически рассмотреть движение даже постоянного, плавного, ламинарного потока, что же касается полностью турбулентной струи воздуха, которая движется в органной трубе, то её анализ невероятно сложен. К счастью, турбулентность, представляющая собой сложный вид движения воздуха, в действительности упрощает характер воздушного потока. Если бы этот поток был ламинарным, то взаимодействие струи воздуха с окружающей средой зависело бы от их вязкости. В нашем случае турбулентность заменяет вязкость в качестве определяющего фактора взаимодействия в прямой зависимости от ширины воздушного потока. При строительстве органа особое внимание уделяется тому, чтобы воздушные потоки в трубах были полностью турбулентны, что достигается с помощью мелких нарезок по кромке язычка. Как ни удивительно, в отличие от ламинарного турбулентный поток устойчив и может быть воспроизведён.

Полностью турбулентный поток постепенно смешивается с окружающим воздухом. Процесс расширения и замедления при этом сравнительно несложен. Кривая, изображающая изменение скорости потока в зависимости от расстояния от центральной плоскости его сечения, имеет вид перевёрнутой параболы, вершина которой соответствует максимальному значению скорости. Ширина потока возрастает пропорционально расстоянию от лабиальной щели. Кинетическая энергия потока остаётся неизменной, поэтому уменьшение его скорости пропорционально корню квадратному из расстояния от щели. Эта зависимость подтверждается как расчётами, так и результатами эксперимента (при учёте небольшой области перехода вблизи лабиальной щели).

В уже возбуждённой и звучащей органной трубе воздушный поток попадает из лабиальной щели в интенсивное звуковое поле в прорези трубы. Движение воздуха, связанное с генерацией звуков, направлено через прорезь и, следовательно, перпендикулярно плоскости потока. Пятьдесят лет назад Б. Брауну из колледжа Лондонского университета удалось сфотографировать ламинарный поток задымлённого воздуха в звуковом поле. На снимках было отмечено образование извилистых волн, увеличивающихся по мере их продвижения вдоль потока, пока последний не распадался на два ряда вихревых колец, вращающихся в противоположных направлениях. Упрошенная интерпретация этих и подобных им наблюдений привела к неверному описанию физических процессов в органных трубах, которое можно найти во многих учебниках.

Более плодотворный метод изучения действительного поведения воздушной струи в звуковом поле заключается в экспериментировании с отдельно взятой трубой, в которой звуковое поле создаётся с помощью репродуктора. В результате таких исследований, проведённых Дж. Колтманом в лаборатории компании Westinghouse Electric Corporation и группой с моим участием в Университете Новой Англии в Австралии, были разработаны основы современной теории физических процессов, происходящих в органных трубах. Фактически ещё Рэлей дал тщательное и почти полное математическое описание ламинарных потоков невязких сред. Поскольку обнаружилось, что турбулентность не усложняет, а упрощает физическую картину воздушной струн, оказалось возможным использовать метод Рэлея с небольшими изменениями для описания воздушных потоков, экспериментально полученных и исследованных Колтманом и нашей группой.

Если бы в трубе не было лабиальной щели, то можно было бы ожидать, что воздушная струя в виде полосы движущегося воздуха просто смещалась бы назад и вперёд вместе со всем остальным воздухом в прорези трубы под воздействием акустических колебаний. В действительности же при выходе струи из щели она эффективно стабилизируется самой щелью. Этот эффект можно сравнить с результатом наложения на общее колебательное движение воздуха в звуковом поле строго сбалансированного смешения, локализованного в плоскости горизонтального ребра. Это локализованное смешение, которое имеет ту же частоту и амплитуду, что и звуковое поле, и в результате создаёт у горизонтального ребра нулевое смешение струи, сохраняется в движущемся потоке воздуха и создаёт извилистую волну.

Пять труб разной конструкции производят звуки одинаковой высоты, но разного тембра. Вторая труба слева – это дульсиана, обладающая нежным, тонким звучанием, напоминающим звучание струнного инструмента. Третья труба – открытый диапазон, дающий светлый, звонкий звук, который наиболее характерен для органа. У четвертой трубы звук сильно приглушённой флейты. Пятая труба – Waldflote (« лесная флейта») с мягким звучанием. Деревянная труба слева закрыта заглушкой. Она имеет ту же основную частоту колебаний, что и другие трубы, но резонирует на нечётных обертонах, частоты которых в нечётное число раз больше основной частоты. Длина остальных труб не совсем одинакова, так как для получения одинаковой высоты тона производится «коррекция конца».

Как показал Рэлей для исследованного им типа струи и как мы всесторонне подтвердили для случая с расходящейся турбулентной струёй, волна распространяется вдоль потока со скоростью несколько меньшей половины скорости движения воздуха в центральной плоскости струи. При этом по мере движения вдоль потока амплитуда волны возрастает почти по экспоненте. Как правило, она увеличивается вдвое при перемещении волны на один миллиметр и её воздействие быстро становится преобладающим по отношению к простому возвратно-поступательному боковому перемещению, вызываемому звуковыми колебаниями.

Было установлено, что наибольшая скорость увеличения волны достигается в том случае, когда её длина вдоль потока в шесть раз превышает ширину потока в данной точке. С другой стороны, если длина волны оказывается меньше ширины потока, то амплитуда не увеличивается и волна может вообще исчезнуть. Поскольку воздушная струя расширяется и замедляет движение по мере удаления от щели, распространяться по длинным потокам с большой амплитудой могут только длинные волны, то есть низкочастотные колебания. Это обстоятельство окажется немаловажным при последующем рассмотрении создания гармонического звучания органных труб.

Рассмотрим теперь воздействие на воздушную струю звукового поля органной трубы. Нетрудно представить, что акустические волны звукового поля в прорези трубы заставляют кончик воздушной струи перемешаться поперёк верхней губы прорези, так что струя оказывается то внутри трубы, то вне её. Это напоминает картину, когда толкают уже раскачивающиеся качели. Воздушный столб в трубе уже колеблется, и, когда порывы воздуха входят в трубу синхронно с колебанием, они сохраняют силу колебаний, несмотря на различные потери энергии, связанные с распространением звука и трением воздуха о стенки трубы. Если же порывы воздуха не совпадают с колебаниями воздушного столба в трубе, они будут подавлять эти колебания и звук будет затухать.

Форма воздушной струи показана на рисунке в виде ряда последовательных кадров при выходе из лабиальной щели в движущееся акустическое поле, создаваемое в «ротике» трубы воздушным столбом, который резонирует внутри трубы. Периодическое смещение воздуха в разрезе ротика создаёт извилистую волну, движущуюся со скоростью вдвое меньшей скорости движения воздуха в центральной плоскости струи и увеличивающейся по экспоненте, пока её амплитуда не превысит ширину самой струи. Горизонтальные сечения показывают отрезки пути, которые волна в струе проходит за последовательные четверти периода колебаний Т . Секущие линии сближаются с уменьшением скорости струи. В органной трубе верхняя губа расположена в месте, указанном стрелкой. Воздушная струя попеременно выходит из трубы и входит в неё.

Измерение звукопроизводящих свойств воздушной струи можно осуществить, помещая в открытый конец трубы фетровые или пенопластовые клинья, препятствующие звучанию, и создавая звуковую волну небольшой амплитуды с помощью громкоговорителя. Отражаясь от противоположного конца трубы, звуковая волна взаимодействует у разреза «ротика» с воздушной струёй. Взаимодействие струи со стоячей волной внутри трубы измеряется с помощью переносного микрофона-тестера. Таким способом удается обнаружить, увеличивает или уменьшает воздушная струя энергию отраженной волны в нижней части трубы. Для того чтобы труба звучала, струя должна увеличивать энергию. Результаты измерения выражаются в величине акустической «проводимости», определяемой как отношение акустического потока на выходе из разреза « ротика» к звуковому давлению непосредственно за резрезом. Кривая значений проводимости при различных сочетаниях давления нагнетания воздуха и частоты колебаний имеет форму спирали, как показано на следующем рисунке.

Связь между возникновением акустических колебаний в прорези трубы и моментом поступления очередной порции воздушной струи на верхнюю губу прорези определяется отрезком времени, за который волна в воздушном потоке проходит расстояние от лабиальной щели до верхней губы. Мастера по изготовлению органов называют это расстояние «подрезом». Если «подрез» велик или давление (а следовательно, и скорость движения) воздуха низкое, то время движения будет большим. И наоборот, если «подрез» мал или давление воздуха высокое, то время движения будет небольшим.

Для того чтобы точно определить фазовое соотношение между колебаниями воздушного столба в трубе и поступлениями порций воздушной струи на внутреннюю кромку верхней губы, необходимо более подробно изучить характер воздействия этих пропорций на воздушный столб. Гельмгольц считал, что главным фактором здесь является объем воздушного потока, доставляемого струёй. Поэтому для того, чтобы порции струи сообщали как можно больше энергии колеблющемуся воздушному столбу, они должны поступать в тот момент, когда давление у внутренней части верхней губы достигает максимума.

Рэлей выдвигал другое положение. Он доказывал, что, поскольку прорезь находится сравнительно недалеко от открытого конца трубы, акустические волны у прорези, на которые воздействует воздушная струя, не могут создавать большое давление. Рэлей считал, что воздушный поток, поступая в трубу, фактически наталкивается на преграду и почти останавливается, что быстро создаёт в нём высокое давление, которое и оказывает воздействие на его движение в трубе. Поэтому, по мнению Рэлея, воздушная струя будет передавать максимальное количество энергии в том случае, если она будет поступать в трубу в момент, когда максимальным будет не давление, а сам поток акустических волн. Сдвиг между этими двумя максимумами составляет одну четверть периода колебаний воздушного столба в трубе. Если провести аналогию с качелями, то это различие выражается в толкании качелей, когда они находятся в верхней точке и обладают максимальной потенциальной энергией (по Гельмгольцу), и в момент, когда они находятся в самой нижней точке и обладают максимальной скоростью (по Рэлею).

Кривая акустической проводимости струи имеет форму спирали. Расстояние от начальной точки указывает величину проводимости, а угловое положение – сдвиг фаз между акустическим потоком на выходе из прорези и звуковым давлением за прорезью. Когда поток совпадает по фазе с давлением, значения проводимости лежат в правой половине спирали и происходит рассеяние энергии струи. Для того чтобы струя генерировала звук, значения проводимости должны находиться в левой половине спирали, что имеет место при компенсации или задержке по фазе движения струи по отношению к давлению за разрезом трубы. В этом случае длина отраженной волны выше длины падающей волны. Величина опорного угла зависитот того, какой из двух механизмов доминирует в возбуждении трубы: механизм Гельмгольца или механизм Рэлея. При проводимости, соответствующей верхней половине спирали, струя понижает собственную резонансную частоту трубы, а когда значение проводимости находится в нижней части спирали, повышает собственную резонансную частоту трубы.

График движения воздушного потока в трубе (пунктирная кривая) при данном отклонении струи несимметричен по отношению к нулевой величине отклонения, поскольку губа трубы устроена так, чтобы разрезать струю не по её центральной плоскости. Когда отклонение струи происходит по простой синусоиде с большой амплитудой (сплошная кривая черного цвета), воздушный поток, поступающий в трубу (цветная кривая), «насыщается» сначала у одной крайней точки отклонения струи, когда она полностью выходит из трубы. При ещё большей амплитуде происходит насыщение воздушного потока и у другой крайней точки отклонения, когда струя полностью входит в трубу. Смещение губы придает потоку асимметричную волновую форму, обертоны которой имеют частоты, кратные частоте отклоняющей волны.

На протяжении 80 лет задача оставалась нерешённой. Более того, новые исследования фактически не проводились. И лишь теперь она нашла удовлетворительное решение благодаря работам Л. Кремера и X. Лизинга из Института им. Генриха Герца в Зап. Берлине, С. Эллера из Военно-морской академии США, Колтмана и нашей группы. Коротко говоря, и Гельмгольц, и Рэлей оба были отчасти правы. Соотношение между двумя механизмами воздействия определяется давлением нагнетаемого воздуха и частотой звука, причём механизм Гельмгольца оказывается основным при низких давлениях и высоких частотах, а механизм Рэлея – при высоких давлениях и низких частотах. Для органных труб стандартной конструкции механизм Гельмгольца играет обычно более важную роль.

Колтман разработал простой и эффективный способ изучения свойств воздушной струи, который был несколько модифицирован и усовершенствован в нашей лаборатории. В основе этого метода лежит изучение воздушной струи у прорези органной трубы, когда дальний конец её закрыт фетровыми или пенопластовыми звукопоглощающими клиньями, не дающими трубе звучать. Затем из репродуктора, помещённого у дальнего конца, вниз по трубе подаётся звуковая волна, которая отражается от края прорези сначала при наличии нагнетаемой струи, а потом без неё. В обоих случаях падающая и отражённая волны взаимодействуют внутри трубы, создавая стоячую волну. Измеряя с помощью небольшого микрофона-зонда изменения в конфигурации волны при подаче воздушной струи, можно определить, увеличивает или уменьшает струя энергию отражённой волны.

В наших экспериментах фактически измерялась «акустическая проводимость» воздушной струи, которая определяется отношением акустического потока на выходе из прорези, создаваемого присутствием струи, к акустическому давлению непосредственно внутри прорези. Акустическая проводимость характеризуется величиной и фазовым углом, которые можно представить графически в виде функции частоты или давления нагнетания. Если представить график проводимости при независимом изменении частоты и давления, то кривая будет иметь форму спирали (см. рисунок). Расстояние от начальной точки спирали указывает величину проводимости, а угловое положение точки на спирали соответствует запаздыванию фазы извилистой волны, возникающему в струе под воздействием акустических колебаний в трубе. Запаздывание на одну длину волны соответствует 360° по окружности спирали. Вследствие особых свойств турбулентной струи оказалось, что при умножении величины проводимости на квадратный корень из величины давления все величины, измеренные для данной органной трубы, укладываются на одной и той же спирали.

Если давление остаётся постоянным, а частота поступающих звуковых волн растёт, то точки, указывающие величину проводимости, приближаются по спирали к её середине по часовой стрелке. При постоянной частоте и увеличении давления эти точки удаляются от середины в противоположном направлении.

Внутренний вид органа Сиднейского оперного театра. Видны некоторые трубы его 26 регистров. Большая часть труб сделана из металла, некоторые изготовлены из дерева. Длина звучащей части трубы удваивается через каждые 12 труб, а диаметр трубы удваивается примерно через каждые 16 труб. Многолетний опыт мастеров – создателей органов позволил им найти наилучшие пропорции, обеспечивающие устойчивый тембр звучания.

Когда точка величины проводимости находится в правой половине спирали, струя отбирает энергию у потока в трубе, и поэтому происходит потеря энергии. При положении точки в левой половине струя передаст энергию потоку и тем самым действует как генератор звуковых колебаний. При положении значения проводимости в верхней половине спирали струя понижает собственную резонансную частоту трубы, а когда эта точка находится в нижней половине, струя повышает собственную резонансную частоту трубы. Величина угла, характеризующего отставание по фазе, зависит от того, по какой схеме – Гельмгольца или Рэлея – осуществляется основное возбуждение трубы, а это, как было показано, определяется величинами давления и частоты. Однако этот угол, отсчитываемый от правой части горизонтальной оси (правая четверть), никогда не бывает значительно больше нуля.

Поскольку 360° по окружности спирали соответствует отставанию по фазе, равному длине и извилистой волны, распространяющейся вдоль воздушной струи, величины такого отставания от значительно меньших четверти длины волны до почти трёх четвёртых её длины будут лежать на спирали от центральной линии, то есть в той части, где струя действует как генератор звуковых колебаний. Мы также видели, что при постоянной частоте отставание по фазе является функцией давления нагнетаемого воздуха, от которой зависят как скорость самой струи, так и скорость распространения извилистой волны вдоль струи. Поскольку скорость такой волны составляет половину скорости струи, которая в свою очередь прямо пропорциональна корню квадратному из величины давления, изменение фазы струи на половину длины волны возможно лишь при значительном изменении давления. Теоретически давление может меняться в девятикратном размере, прежде чем труба перестаёт производить звучание на своей основной частоте, если другие условия не нарушаются. На практике, однако, труба начинает звучать на более высокой частоте до достижения указанного высшего предела изменения давления.

Следует отметить, что для восполнения потерь энергии в трубе и обеспечения устойчивости звука, несколько витков спирали может уйти далеко влево. Заставить трубу звучать может только ещё один такой виток, местоположение которого соответствует примерно трём полуволнам в струе. Так как проводимость струн в этой точке низка, продуцируемый звук слабее любого звука, соответствующего точке на внешнем витке спирали.

Форма спирали проводимости может ещё больше усложниться, если величина отклонения у верхней губы превышает ширину самой струи. При этом струя почти полностью выдувается из трубы и вдувается в неё обратно на каждом цикле перемещения, и количество энергии, которую она сообщает отражённой волне в трубе, перестаёт зависеть от дальнейшего увеличения амплитуды. Соответственно снижается и эффективность воздушной струн в режиме генерации акустических колебаний. В этом случае увеличение амплитуды отклонения струи приводит лишь к уменьшению спирали проводимости.

Снижение эффективности струи мри увеличении амплитуды отклонения сопровождается возрастанием потерь энергии в органной трубе. Колебания в трубе быстро устанавливаются на более низком уровне, при котором энергия струи точно компенсирует потери энергии в трубе. Интересно отметить, что в большинстве случаев потери энергии вследствие турбулентности и вязкости значительно превышают потери, связанные с рассеянием звуковых волн через прорезь и открытый коней трубы.

Разрез органной трубы диапазонного типа, на котором видно, что язычок имеет насечку для соэданияоднородного турбулентного движения струи воздуха. Труба изготовлена из «краплёного металла» – сплава с большим содержанием олова и добавкой свинца. При изготовлении листового материала из этого сплава на нём закрепляется характерный рисунок, который хорошо виден на фотографии.

Разумеется, действительное звучание трубы в органе не ограничено одной определённой частотой, но содержит и звуки более высокой частоты. Можно доказать, что эти обертоны являются точными гармониками основной частоты и отличаются от неё в целое число раз. При постоянных условиях воздухонагнетания форма звуковой волны на осциллографе остаётся совершенно одинаковой. Малейшее отклонение частоты гармоник от величины, строго кратной основной частоте, приводит к постепенному, но чётко видимому изменению формы волны.

Это явление представляет интерес, потому что резонансные колебания воздушного столба в органной трубе, как и в любой открытой трубе, устанавливаются на частотах, которые несколько отличаются от частот гармоник. Дело в том, что при увеличении частоты рабочая длина трубы становится немного меньше из-за изменения акустического потока у открытых концов трубы. Как будет показано, обертоны в органной трубе создаются за счёт взаимодействия воздушной струи и губы прорези, а сама труба служит для обертонов более высокой частоты главным образом пассивным резонатором.

Резонансные колебания в трубе создаются при наибольшем движении воздуха у её отверстий. Другими словами, проводимость в органной трубе должна достигать своего максимума у прорези. Отсюда следует, что резонансные колебания и трубе с открытым длинным концом возникают на частотах, при которых в длине трубы укладывается целое число полуволн звуковых колебаний. Если обозначить основную частоту как f 1 , то более высокие резонансные частоты будут 2f 1 , 3f 1 и т.д. (В действительности, как уже было указано, высшие резонансные частоты всегда немного превышают эти значения.)

В трубе с закрытым или заглушенным дальним конном резонансные колебания возникают на частотах, при которых в длине трубы укладывается нечётное число четвертей длины волны. Поэтому для звучания на той же самой ноте закрытая труба может быть вдвое короче открытой, и её резонансные частоты будут f 1 , 3f 1 , 5f 1 и т.д.

Результаты влияния изменения давления нагнетаеого воздуха на звук в обычной органной трубе. Римскими цифрами обозначены первые несколько обертонов. Главный режим трубы (в цвете) охватывает диапазон хорошо сбалансированного нормального звучания при нормальном давлении. При увеличении давления звучание трубы переходит на второй обертон; при понижении давления создается ослабленный второй обертон.

Теперь вернёмся к воздушной струе в органной трубе. Мы видим, что волновые возмущения высокой частоты постепенно затухают по мере увеличения ширины струи. Вследствие этого конец струи у верхней губы колеблется почти по синусоиде на основной частоте звучания трубы и почти независимо от более высоких гармоник колебаний акустического поля у прорези трубы. Однако синусоидальное движение струи не создаст такого же движения воздушного потока в трубе, поскольку поток «насыщается» за счёт того, что при крайнем отклонении в любую сторону он полностью течёт либо с внутренней, либо с внешней стороны верхней губы. Кроме того, губа обычно несколько смещена и разрезает поток не точно по его центральной плоскости, так что насыщение оказывается несимметричным. Поэтому колебание потока в трубе имеет полный набор гармоник основной частоты со строго определённым соотношением частот и фаз, а относительные амплитуды этих высокочастотных гармоник быстро возрастают с увеличением амплитуды отклонения воздушной струи.

В обычной органной трубе величина отклонения струи в прорези соизмерима с шириной струи у верхней губы. В результате в воздушном потоке создаётся большое число обертонов. Если бы губа разделяла струю строго симметрично, чётные обертоны в звучании отсутствовали бы. Поэтому обычно губе придаётся некоторое смешение, чтобы сохранить все обертоны.

Как и следовало ожидать, открытая и закрытая трубы создают звук разного качества. Частоты обертонов, создаваемых струёй, кратны основной частоте колебаний струи. Столб воздуха в трубе будет сильно резонировать на определённый обертон только при большой акустической проводимости трубы. При этом будет отмечаться резкое увеличение амплитуды на частоте, близкой к частоте обертона. Поэтому в закрытой трубе, где создаются лишь обертоны с нечётными номерами резонансной частоты, происходит подавление всех других обертонов. В результате получается характерный «глухой» звук, в котором чётные обертоны слабы, хотя и не отсутствуют полностью. Напротив, а открытой трубе получается более «светлый» звук, поскольку он сохраняет все обертоны, производные от основной частоты.

Резонансные свойства трубы в большой степени зависят от потерь энергии. Эти потери бывают двух типов: потери на внутреннее трение и теплоотдачу и потери на излучение через прорезь и открытый конец трубы. Потери первого типа более значительны в узких трубах и при низкой частоте колебаний. Для широких труб и при высокой частоте колебаний существенными являются потери второго типа.

Влияние места расположения губы на создание обертонов свидетельствует о целесообразности смещения губы. Если бы губа разделяла струю строго по центральной плоскости, в трубе создавался бы только звук основной частоты (I) и третий обертон (III). При смещении губы, как показано пунктирной линией, возникают второй и четвёртый обертоны, значительно обогащающие качество звука.

Отсюда следует, что при данной длине трубы, а следовательно, и определённой основной частоте широкие трубы могут служить хорошими резонаторами только для основного тона и ближайших нескольких обертонов, образующих приглушенный «флейтоподобный» звук. Узкие трубы служат хорошими резонаторами для широкого диапазона обертонов, и поскольку излучение на высоких частотах происходит более интенсивно, чем на низких, то образуется высокий «струнный» звук. Между этими двумя звучаниями находится звонкий сочный звук, стать характерный для хорошего органа, который создаётся так называемыми принципалами или диапазонами.

Кроме того, в большом органе могут быть ряды труб с коническим корпусом, перфорированной заглушкой или иными разновидностями геометрической формы. Такие конструкции предназначены для модификации резонансных частот трубы, а иногда для увеличения диапазона высокочастотных обертонов с целью получения тембра особой звуковой окраски. Выбор материала, из которого изготавливается труба, не имеет большого значения.

Существует большое число возможных видов колебаний воздуха в трубе, и это в ещё большей степени усложняет акустические свойства трубы. Например, при увеличении давления воздуха в открытой трубе до такой степени, что в струе будет как раз создаваться первый обертон f 1 одной четверти длины основной волны, точка на спирали проводимости, соответствующая этому обертону, перейдёт на её правую половину и струя перестанет создавать обертон данной частоты. В то же время частота второго обертона 2f 1 соответствует полуволне в струе, и он может быть устойчивым. Поэтому звучание трубы перейдёт на этот второй обертон, почти на целую октаву выше первого, причём точная частота колебаний будет зависеть от резонансной частоты трубы и давления нагнетания воздуха.

Дальнейшее увеличение давления нагнетания может привести к образованию следующего обертона 3f 1 при условии, что «подрез» губы не слишком велик. С другой стороны, часто бывает, что низкое давление, недостаточное для образования основного тона, постепенно создаёт один из обертонов на втором витке спирали проводимости. Подобные звуки, создаваемые при излишке или недостатке давления, представляют интерес для лабораторных исследований, но в самих органах применяются крайне редко, лишь для достижения какого-то особого эффекта.


Вид стоячей волны при резонансе в трубах с открытым и закрытым верхним концом. Ширина каждой цветной линии соответствует амплитуде колебаний в различных частях трубы. Стрелками указано направление движения воздуха во время одной половины колебательного цикла; во второй половине цикла направление движения меняется на обратное. Римскими цифрами обозначены номера гармоник. Для открытой трубы резонансными являются все гармоники основной частоты. Закрытая труба должна быть вдвое короче для создании той же ноты, но для нее резонансными являются только нечетные гармоники. Сложная геометрия «ротика» трубы несколько искажает конфигурацию волн ближе к нижнему концу трубы, не меняя их « основного» характера.

После того как мастер при изготовлении органа сделал одну трубу, обладающую необходимым звучанием, основная и наиболее трудная его задача – создать весь ряд труб соответствующей громкости и гармоничности звучании по всему музыкальному диапазону клавиатуры. Этого нельзя достичь простым набором труб одинаковой геометрии, различающихся только своими размерами, поскольку у таких труб потери энергии от трения и излучения будут по-разному влиять на колебания различной частоты. Чтобы обеспечить постоянство акустических свойств по всему диапазону, необходимо варьировать целым рядом параметров. Диаметр трубы меняется при изменении её длины и зависит от неё как степень с показателем k, где k меньше 1. Поэтому длинные басовые трубы делают более узкими. Расчётная величина k составляет 5/6, или 0,83, но с учётом психофизических особенностей человеческого слуха она должна быть уменьшена до 0,75. Это значение kочень близко к тому, которое эмпирически определили великие мастера органов XVII и XVIII вв.

В заключение рассмотрим вопрос, важный с точки зрения игры на органе: каким образом осуществляется управление звучанием множества труб в большом органе. Основной механизм этого управления прост и напоминает ряды и колонки матрицы. Трубы, располагаемые по регистрам, соответствуют рядам матрицы. Все трубы одного регистра обладают одним тембром, и каждая труба соответствует одной ноте на ручной или ножной клавиатуре. Подача воздуха к трубам каждого регистра регулируется специальным рычагом, на котором указано название регистра, а подача воздуха непосредственно к трубам, связанным с данной нотой н составляющим колонку матрицы, регулируется соответствующей клавишей на клавиатуре. Труба будет звучать лишь в том случае, если передвинут рычажок регистра, в котором она находится, и нажата нужная клавиша.

Размещение органных труб напоминает ряды и колонки матрицы. На этой упрощённой схеме каждый ряд, именуемый регистром, состоит из однотипных труб, каждая из которых производит одну ноту (верхняя часть схемы). Каждая колонка, связанная с одной нотой на клавиатуре (нижняя часть схемы), включает трубы разных типов (левая часть схемы). Рычажком на консоли (правая часть схемы) обеспечивается доступ воздуха ко всем трубам регистра, а нажатием клавиши на клавиатуре воздух нагнетается во все трубы данной ноты. Доступ воздуха в трубу возможен только при одновременном включении ряда и колонки.

В наше время можно применять самые различные способы осуществления подобной схемы с использованием цифровых логических устройств и электрически управляемых клапанов на каждой трубе. На старых органах использовались простые механические рычажки и пластинчатые клапаны для подачи воздуха в клавишные каналы и механические ползуны с отверстиями для управления поступлением воздуха к целому регистру. Эта простая и надёжная механическая система, помимо своих конструктивных достоинств, позволяла органисту самому регулировать скорость открытия всех клапанов и как бы делала ему более близким этот уж слишком механический музыкальный инструмент.

В XIX в начале XX в. строились большие органы со всевозможными электромеханическими и электропневматическим устройствами, но в последнее время предпочтение опять отдаётся механическим передачам от клавиш и педалей, а сложные электронные устройства используются для одновременного включения сочетаний регистров во время игры на органе. Например, самый большой орган в мире с механической передачей был установлен в концертном зале Сиднейского оперного театра в 1979 г. В нем 10500 труб в 205 регистрах, распределённых между пятью ручными и одной ножной клавиатурами. Клавишное управление осуществляется механическим способом, но оно дублируется электрической передачей, к которой можно подключаться. Благодаря этому исполнение органиста может быть записано в кодированной цифровой форме, которую затем можно использовать для автоматического воспроизведения на органе первоначального исполнения. Управление регистрами и их сочетаниями осуществляется с помощью электрических или электропневматических устройств и микропроцессоров с памятью, что позволяет широко варьировать управляющую программу. Таким образом, великолепное богатое звучание величественного органа создаётся сочетанием самых передовых достижений современной техники и традиционных приёмов и принципов, которые на протяжении многих столетий использовались мастерами прошлого.

    ОРГАН, клавишный музыкальный инструмент класса аэрофонов. Аналогичные инструменты существовали в Древней Греции, Риме и Византии. С 7 в. используется в церквах (католических), впоследствии также в светской музыке. Современный вид приобрел с 16 в … Энциклопедический словарь

    - (organum лат., organo итал., Orgel нем., orgue франц., organ англ.) большой музыкальный духовой хроматический клавишный инструмент с мехами, трубами, трубками (металлическими, деревянными, без язычков и с язычками) различных тембров. По звуковому … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Орган (лат. organum, от греч. órganon орудие, инструмент), духовой клавишный музыкальный инструмент. Состоит из набора труб (деревянных и металлических) разных размеров и пневматической системы (воздухонагнетающего устройства и воздухопроводов),… … Большая советская энциклопедия

    Музыкальный инструмент электронный - Электронное устройство, такое как электронный орган, электронное пианино или музыкальный синтезатор, которое воспроизводит музыку под управлением музыканта... Источник: ГОСТ Р МЭК 60065 2002. Аудио, видео и аналогичная электронная аппаратура.… … Официальная терминология

    Труба Классификация Аэрофон Медный духовой музыкальный инструмент с вентилями … Википедия

    Корнет Классификация Аэрофон Медный духовой музыкальный инструме … Википедия

    У этого термина существуют и другие значения, см. Горн. Горн … Википедия

    У этого термина существуют и другие значения, см. Треугольник (значения). Треугольник Класс … Википедия

Самый большой, самый величественный музыкальный инструмент имеет древнюю историю возникновения, насчитывающую множество этапов усовершенствования.

Наиболее отдаленным от нас во времени предком органа принято считать вавилонскую волынку, распространенную в Азии в XIX-XVIII веках до нашей эры. В мех этого инструмента воздух нагнетался через трубку, а с другой стороны был расположен корпус с дудками, имеющими отверстия и язычки.

История возникновения органа помнит и «следы древнегреческих богов»: божество лесов и рощ Пан, по преданию, придумал объединить тростниковые палочки разной длины, и с тех пор флейта Пана стала неразлучна с музыкальной культурой Древней Греции.

Однако музыканты понимали: на одной дудочке играть легко, а вот на нескольких – не хватает дыхания. Поиски замены человеческого дыхания для игры на музыкальных инструментах принесли первые плоды уже во II-III веке до н.э.: на музыкальную сцену на несколько веков вышел гидравлос.

Гидравлос – первый шаг к величию органа

Приблизительно в III веке до н.э. греческий изобретатель, математик, «отец пневматики» Ктезибий Александрийский создал устройство, состоящее из двух поршневых насосов, резервуара для воды и трубок для издания звуков. Один насос подавал воздух внутрь, второй подавал его к трубам, а резервуар с водой выравнивал давление и обеспечивал более ровное звучание инструмента.

Через два столетия Герон Александрийский, греческий математик и инженер, усовершенствовал гидравлос, добавив в конструкцию миниатюрную ветряную мельницу и металлическую шаровидную камеру, погруженную в воду. Усовершенствованный водяной орган получил 3-4 регистра, в каждом из которых находилось 7-18 труб диатонической настройки.

Водяной орган получил большое распространение в странах Средиземноморского региона. Гидравлос звучал на состязаниях гладиаторов, свадьбах и пиршествах, в театрах, цирках и на ипподромах, во время религиозных обрядов. Орган стал любимым инструментом императора Нерона, его звучание можно было услышать по всей Римской империи.


На службе у христианства

Несмотря на общий культурный упадок, наблюдавшийся в Европе после падения Римской империи, орган не был забыт. Уже к середине V века усовершенствованные духовые органы строились в церквях Италии, Испании и Византии. Центрами органной музыки становились страны наибольшего религиозного влияния, а оттуда инструмент распространялся по всей Европе.

Средневековый орган значительно отличался от современного «собрата» меньшим количеством труб и большим размером клавиш (длиной до 33 см и шириной 8-9 см), по которым для издания звука били кулаком. Были изобретены «портатив»- маленький переносной орган, и «позитив» — миниатюрный стационарный орган.

XVII-XVIII века считаются «золотым веком» органной музыки. Уменьшение размеров клавиш, обретение органом красоты и разнообразия звучания, кристальной тембровой ясности и появление на свет целой плеяды предопределили великолепие и величие органа. Торжественная музыка Баха, Бетховена, Моцарта и множества других композиторов звучала под высокими сводами всех католических соборов Европы, а практически все лучшие музыканты служили церковными органистами.

При всей неразрывной связи с католической церковью, для органа написано достаточно много «светских» произведений, в том числе, и русскими композиторами.

Органная музыка в России

Развитие органной музыки в России пошло исключительно по «светскому» пути: православие категорически отвергло использование органа в богослужениях.

Первое упоминание органа на Руси встречается на фресках Софийского собора в Киеве: «каменная летопись» Киевской Руси, датированная X-XI веками, сохранила изображение играющего на «позитиве» музыканта и двух калькантов (людей, закачивающих воздух в меха).

Живой интерес к органу и органной музыке проявляли Московские государи разных исторических периодов: Иван III, Борис Годунов, Михаил и Алексей Романовы «выписывали» из Европы органистов и строителей органов. При правлении Михаила Романова в Москве стали известны не только иностранные, а и русские органисты, такие как Томила Михайлов (Бесов), Борис Овсонов, Мелентий Степанов и Андрей Андреев.

Петр I, посвятивший жизнь внедрению в российское общество достижений западной цивилизации, еще в 1691 году поручил немецкому специалисту Арпу Шнитгеру построить для Москвы орган с 16 регистрами. Через шесть лет, в 1697 году, Шнитгер отправляет в Москву еще один, 8-регистровый инструмент. При жизни Петра в лютеранских и католических храмах на территории России были построены десятки органов, среди которых и гигантские проекты на 98 и 114 регистров.

Императрицы Елизавета и Екатерина II также внесли свой вклад в развитие органной музыки в России – при их правлении десятки инструментов получили Санкт-Петербург, Таллинн, Рига, Нарва, Елгава и другие города северо-западного региона империи.

Многие русские композиторы использовали орган в своем творчестве, достаточно вспомнить «Орлеанскую деву» Чайковского, «Садко» Римского-Корсакова, «Прометея» Скрябина, . Русская органная музыка сочетала в себе классические западноевропейские музыкальные формы и традиционную национальную выразительность и обаяние, обладала сильным влиянием на слушателя.

Современный орган

Пройдя исторический путь длиною в два тысячелетия, орган XX-XXI века выглядит следующим образом: несколько тысяч труб, расположенных на разных ярусах и изготовленных из дерева и металла. Деревянные трубы квадратного сечения издают басовые низкие звуки, а металлические трубы из сплава олова и свинца имеют круглое сечение и предназначены для более тонкого, высокого звучания.

Органы-рекордсмены прописаны за океаном, в Соединенных Штатах Америки. Орган, расположенный в Филадельфийском торговом центре Macy’s Lord & Taylor, весит 287 тонн и имеет шесть мануалов. Инструмент, расположенный в Зале согласия города Атлантик Сити, является самым громким органом в мире и насчитывает более 33000 труб.

Наиболее крупные и величественные органы России находятся в Московском доме музыки, а также в Концертном зале им. Чайковского.

Развитие в новых направлений и стилей значительно увеличило количество типов и разновидностей современного органа, со своими отличиями в принципе работы и специфическими особенностями. Сегодняшняя классификация органов такова:

  • духовой орган;
  • симфонический орган;
  • театральный орган;
  • электроорган;
  • орган Хаммонда;
  • орган Тифон;
  • паровой орган;
  • уличный орган;
  • оркестрион;
  • органола;
  • пирофон;
  • морской орган;
  • камерный орган;
  • церковный орган;
  • домашний орган;
  • органум;
  • цифровой орган;
  • рок-орган;
  • поп-орган;
  • виртуальный орган;
  • мелодиум.

Этому клавишному духовому инструменту, по образной характеристике В. В. Стасова, «...в особенности свойственно воплощение в музыкальных образах и формах стремлений нашего духа к колоссальному и беспредельно величественному; у него одного существуют те потрясающие звуки, те громы, тот величественный, говорящий будто из вечности голос, которого выражение невозможно никакому другому инструменту, никакому оркестру».

На сцене концертного зала вы видите фасад орга́на с частью труб. Сотни их находятся за его фасадом, располагаясь ярусами вверх и вниз, вправо и влево, уходят рядами в глубину обширного помещения. Одни трубы расположены горизонтально, другие - вертикально, а некоторые даже подвешены на крюках. У современных органов число труб доходит до 30 000. Самые большие высотой более 10 м, самые маленькие - 10 мм. Кроме того, орган имеет воздухонагнетательный механизм - мехи и воздухопроводы; кафедру, где сидит органист и где сосредоточена система управления инструментом.

Звук органа производит огромное впечатление. Гигантский инструмент обладает множеством различных тембров. Это как бы целый оркестр. В самом деле, диапазон органа превышает диапазон всех инструментов оркестра. Та или иная окраска звука зависит от устройства труб. Набор труб единого тембра называется регистром. Количество их в больших инструментах доходит до 200. Но главное - сочетание нескольких регистров порождает новую окраску звука, новый тембр, не похожий на исходный. У органа несколько (от 2 до 7) ручных клавиатур - мануалов, расположенных террасообразно. По тембровой окраске, регистровому составу они отличаются друг от друга. Особая клавиатура - ножная педаль. Она имеет 32 клавиши для игры носком и каблуком. Традиционно использование педали как самого нижнего голоса - баса, но иногда она служит и как один из средних голосов. На кафедре находятся и рычаги включения регистров. Обычно исполнителю помогают один или два ассистента, они переключают регистры. В новейших инструментах применяется «запоминающее» устройство, благодаря которому можно заранее подобрать определенное сочетание регистров и в нужный момент, нажав кнопку, заставить их звучать.

Органы всегда строились для определенного помещения. Мастера предусматривали все его особенности, акустику, размеры и т. д. Поэтому в мире нет двух одинаковых инструментов, каждый - уникальное творение мастера. Один из лучших - орган Домского собора в Риге.

Музыка для органа записывается на трех нотоносцах. Два из них фиксируют партию мануалов, один - для педали. В нотах не указывается регистровка произведения: исполнитель сам отыскивает наиболее выразительные приемы для раскрытия художественного образа сочинения. Тем самым органист становится как бы соавтором композитора в инструментовке (регистровке) произведения. Орган позволяет тянуть звук, аккорд сколь угодно долго с постоянной громкостью. Эта его особенность приобрела свое художественное выражение в возникновении приема органного пункта: при неизменном звуке в басу мелодия и гармония развиваются. Музыканты на любых инструментах создают динамическую нюансировку внутри каждой музыкальной фразы. Окраска звука органа неизменна независимо от силы удара по клавише, поэтому исполнители применяют особые приемы для изображения начала и конца фраз, логики строения внутри самой фразы. Возможность сочетать одновременно различные тембры обусловила сочинение произведений для органа преимущественно полифонического склада (см. Полифония).

Орган известен с глубокой древности. Изготовление первого органа приписывают механику из Александрии Ктесибию, жившему в III в. до н. э. Это был водяной орган - гидравлос. Давление столба воды обеспечивало равномерность напора воздуха, поступающего в звучащие трубы. Позднее изобрели орган, в котором воздух в трубы подавался с помощью мехов. До появления электрического привода воздух в трубы накачивали специальные рабочие - кальканты. В средние века наряду с большими органами были и маленькие - регали и портативы (от латинского «порто» - «ношу»). Постепенно инструмент сорершенствовался и к XVI в. приобрел почти современный вид.

Музыку для органа писали многие композиторы. Наивысшего своего расцвета органное искусство достигло в конце XVII - 1-й половине XVIII в. в творчестве таких композиторов, как И. Пахельбель, Д. Букстехуде, Д. Фрескобальди, Г. Ф. Гендель, И. С. Бах. Бахом созданы непревзойденные по глубине и совершенству произведения. В России органу значительное внимание уделял М. И. Глинка. Он прекрасно играл на этом инструменте, делал для него переложения различных произведений.

В нашей стране орган можно услышать в концертных залах Москвы, Ленинграда, Киева, Риги, Таллина, Горького, Вильнюса и многих других городов. В исполнении советских и зарубежных органистов звучат произведения не только старинных мастеров, но и советских композиторов.

Строят сейчас и электроорганы. Однако принцип действия у этих инструментов иной: звук возникает благодаря электрическим генераторам различных конструкций (см. Электромузыкальные инструменты).