Коэффициент ранговой корреляции rs Спирмена. Корреляции в дипломных работах по психологии

Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков.

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений,

которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков;

3) две групповые иерархии признаков,

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков.

Как правило, меньшему значению признака начисляется меньший ранг.

В первом случае (два признака) ранжируются индивидуальные значения по первому признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму признаку.

Если два признака связаны положительно, то испытуемые, имеющие низкие ранги по одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по

одному из признаков, будут иметь по другому признаку также высокие ранги. Для подсчета rs необходимо определить разности (d) между рангами, полученными данным испытуемым по обоим признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем

меньше разности между рангами, тем больше будет rs, тем ближе он будет к +1.

Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет

никакого соответствия. Формула составлена так, что в этом случае rs окажется близким к 0.

В случае отрицательной корреляции низким рангам испытуемых по одному признаку

будут соответствовать высокие ранги по другому признаку, и наоборот. Чем больше несовпадение между рангами испытуемых по двум переменным, тем ближе rs к -1.

Во втором случае (два индивидуальных профиля), ранжируются индивидуальные

значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг – признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно проранжировать показатели по личностному опроснику Кеттелла (16PF), если они выражены в "сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до

20 и от 0 до 26. Мы не можем сказать, какой из факторов будет занимать первое место по выраженности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).

Если индивидуальные иерархии двух испытуемых связаны положительно, то признаки, имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот. Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то и у другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С

(эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по

этому фактору высокий ранг и т.д.

В третьем случае (два групповых профиля), ранжируются среднегрупповые значения, полученные в 2-х группах испытуемых по определенному, одинаковому для двух групп, набору признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.

В случае 4-ом (индивидуальный и групповой профили), ранжируются отдельно индивидуальные значения испытуемого и среднегрупповые значения по тому же набору признаков, которые получены, как правило, при исключении этого отдельного испытуемого – он не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и групповой профили.

Во всех четырех случаях значимость полученного коэффициента корреляции определяется по количеству ранжированных значений N. В первом случае это количество будет совпадать с объемом выборки n. Во втором случае количеством наблюдений будет количество признаков, составляющих иерархию. В третьем и четвертом случае N – это также количество сопоставляемых признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах. Если абсолютная величина rs достигает критического значения или превышает его, корреляция достоверна.

Гипотезы.

Возможны два варианта гипотез. Первый относится к случаю 1, второй – к трем остальным случаям.

Первый вариант гипотез

H0: Корреляция между переменными А и Б не отличается от нуля.

H1: Корреляция между переменными А и Б достоверно отличается от нуля.

Второй вариант гипотез

H0: Корреляция между иерархиями А и Б не отличается от нуля.

H1: Корреляция между иерархиями А и Б достоверно отличается от нуля.

Ограничения коэффициента ранговой корреляции

1. По каждой переменной должно быть представлено не менее 5 наблюдений. Верхняя граница выборки определяется имеющимися таблицами критических значений.

2. Коэффициент ранговой корреляции Спирмена rs при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений. В случае, если это условие не соблюдается, необходимо вносить поправку на одинаковые ранги.

Коэффициент ранговой корреляции Спирмена подсчитывается по формуле:

Если в обоих сопоставляемых ранговых рядах присутствуют группы одинаковых рангов, перед подсчетом коэффициента ранговой корреляции необходимо внести поправки на одинаковые ранги Та и Тв:

Та = Σ (а3 – а)/12,

Тв = Σ (в3 – в)/12,

где а – объем каждой группы одинаковых рангов в ранговом ряду А, в – объем каждой

группы одинаковых рангов в ранговом ряду В.

Для подсчета эмпирического значения rs используют формулу:

Расчет коэффициента ранговой корреляции Спирмена rs

1. Определить, какие два признака или две иерархии признаков будут участвовать в

сопоставлении как переменные А и В.

2. Проранжировать значения переменной А, начисляя ранг 1 наименьшему значению, в соответствии с правилами ранжирования (см. П.2.3). Занести ранги в первый столбец таблицы по порядку номеров испытуемых или признаков.

3. Проранжировать значения переменной В, в соответствии с теми же правилами. Занести ранги во второй столбец таблицы по порядку номеров испытуемых или признаков.

5. Возвести каждую разность в квадрат: d2. Эти значения занести в четвертый столбец таблицы.

Та = Σ (а3 – а)/12,

Тв = Σ (в3 – в)/12,

где а – объем каждой группы одинаковых рангов в ранговом ряду А; в – объем каждой группы

одинаковых рангов в ранговом ряду В.

а) при отсутствии одинаковых рангов

rs  1 − 6 ⋅

б) при наличии одинаковых рангов

Σd 2  T  T

r  1 − 6 ⋅ a в,

где Σd2 – сумма квадратов разностей между рангами; Та и Тв – поправки на одинаковые

N – количество испытуемых или признаков, участвовавших в ранжировании.

9. Определить по Таблице (см. Приложение 4.3) критические значения rs для данного N. Если rs, превышает критическое значение или, по крайней мере, равен ему, корреляция достоверно отличается от 0.

Пример 4.1.При определении степени зависимости реакции употребления алкоголя на глазодвигательную реакцию в испытуемой группе были получены данные до употребления алкоголя и после употребления. Зависит ли реакция испытуемого от состояния опьянения?

Результаты эксперимента:

До:16, 13, 14, 9, 10, 13, 14, 14, 18, 20, 15, 10, 9, 10, 16, 17, 18. После: 24, 9, 10, 23, 20, 11, 12, 19, 18, 13, 14, 12, 14, 7, 9, 14. Сформулируем гипотезы:

Н0: корреляция между степенью зависимости реакции до употребления алкоголя и после не отличается от нуля.

Н1: корреляция между степенью зависимости реакции до употребления алкоголя и после достоверно отличается от нуля.

Таблица 4.1. Расчет d2 для рангового коэффициента корреляции Спирмена rs при сопоставлении показателей глазодвигательной реакции до эксперимента и после (N=17)

значения

значения

Так как, мы имеем повторяющиеся ранги, то в данном случае будем применять формулу с поправкой на одинаковые ранги:

Та= ((23-2)+(33-3)+(23-2)+(33-3)+(23-2)+(23-2))/12=6

Тb =((23-2)+(23-2)+(33-3))/12=3

Найдем эмпирическое значение коэффициента Спирмена:

rs = 1- 6*((767,75+6+3)/(17*(172-1)))=0,05

По таблице (приложение 4.3) находим критические значения коэффициента корреляции

0,48 (p ≤ 0,05)

0,62 (p ≤ 0,01)

Получаем

rs=0,05∠rкр(0,05)=0,48

Вывод: Н1гипотеза отвергается и принимается Н0. Т.е. корреляция между степенью

зависимости реакции до употребления алкоголя и после не отличается от нуля.

Коэффициент корреляции Пирсона

Коэффициентr- Пирсона применяется для изучения взаимосвязи двух метрических переменных, измеренных на одной и той же выборке. Существует множество ситуаций, в которых уместно его применение. Влияет ли интеллект на успеваемость на старших курсах университета? Связан ли размер заработной платы работника с его доброжелательностью к коллегам? Влияет ли настроение школьника на успешность решения сложной арифметической задачи? Для ответа на подобные вопросы исследователь должен измерить два интересующих его показателя у каждого члена выборки.

На величину коэффициента корреляции не влияет то, в каких единицах измерения представлены признаки. Следовательно, любые линейные преобразования признаков (умножение на константу, прибавление константы) не меняют значения коэффициента корреляции. Исключением является умножение одного из признаков на отрицательную константу: коэффициент корреляции меняет свой знак на противоположный.

Применение корреляции Спирмена и Пирсона.

Корреляция Пирсона есть мера линейной связи между двумя переменными. Она позволяет определить, насколько пропорциональна изменчивость двух переменных. Если переменные пропорциональны друг другу, то графически связь между ними можно представить в виде прямой линии с положительным (прямая пропорция) или отрицательным (обратная пропорция) наклоном.

На практике связь между двумя переменными, если она есть, является вероятностной и графически выглядит как облако рассеивания эллипсоидной формы. Этот эллипсоид, однако, можно представить (аппроксимировать) в виде прямой линии, или линии регрессии. Линия регрессии - это прямая, построенная методом наименьших квадратов: сумма квадратов расстояний (вычисленных по оси Y) от каждой точки графика рассеивания до прямой является минимальной.

Особое значение для оценки точности предсказания имеет дисперсия оценок зависимой переменной. По сути, дисперсия оценок зависимой переменной Y - это та часть ее полной дисперсии, которая обусловлена влиянием независимой переменной X. Иначе говоря, отношение дисперсии оценок зависимой переменной к ее истинной дисперсии равно квадрату коэффициента корреляции.

Квадрат коэффициента корреляции зависимой и независимой переменных представляет долю дисперсии зависимой переменной, обусловленной влиянием независимой переменной, и называется коэффициентом детерминации. Коэффициент детерминации, таким образом, показывает, в какой степени изменчивость одной переменной обусловлена (детерминирована) влиянием другой переменной.

Коэффициент детерминации обладает важным преимуществом по сравнению с коэффициентом корреляции. Корреляция не является линейной функцией связи между двумя переменными. Поэтому, среднее арифметическое коэффициентов корреляции для нескольких выборок не совпадает с корреляцией, вычисленной сразу для всех испытуемых из этих выборок (т.е. коэффициент корреляции не аддитивен). Напротив, коэффициент детерминации отражает связь линейно и поэтому является аддитивным: допускается его усреднение для нескольких выборок.

Дополнительную информацию о силе связи дает значение коэффициента корреляции в квадрате - коэффициент детерминации: это часть дисперсии одной переменной, которая может быть объяснена влиянием другой переменной. В отличие от коэффициента корреляции коэффициент детерминации линейно возрастает с увеличением силы связи.

Коэффициенты корреляции Спирмена и τ- Кендалла (ранговые корреляции)

Если обе переменные, между которыми изучается связь, представлены в порядковой шкале, или одна из них - в порядковой, а другая - в метрической, то применяются ранговые коэффициенты корреляции: Спирмена или τ- Кенделла. И тот, и другой коэффициент требует для своего применения предварительного ранжирования обеих переменных.

Коэффициент ранговой корреляции Спирмена - это непараметрический метод, который используется с целью статистического изучения связи между явлениями. В этом случае определяется фактическая степень параллелизма между двумя количественными рядами изучаемых признаков и дается оценка тесноты установленной связи с помощью количественно выраженного коэффициента.

Если члены группы численностью были ранжированы сначала по переменной x, затем - по переменной y, то корреляцию между переменными x и y можно получить, просто вычислив коэффициент Пирсона для двух рядов рангов. При условии отсутствия связей в рангах (т.е. отсутствия повторяющихся рангов) по той и другой переменной, формула для Пирсона может быть существенно упрощена в вычислительном отношении и преобразована в формулу, известную как Спирмена.

Мощность коэффициента ранговой корреляции Спирмена несколько уступает мощности параметрического коэффициента корреляции.

Коэффицент ранговой корреляции целесообразно применять при наличии небольшого количества наблюдений. Данный метод может быть использован не только для количественно выраженных данных, но также и в случаях, когда регистрируемые значения определяются описательными признаками различной интенсивности.

Коэффициент ранговой корреляции Спирмена при большом количестве одинаковых рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале оба коррелируемых ряда должны представлять собой две последовательности несовпадающих значений

Альтернативу корреляции Спирмена для рангов представляет корреляция τ- Кендалла. В основе корреляции, предложенной М.Кендаллом, лежит идея о том, что о направлении связи можно судить, попарно сравнивая между собой испытуемых: если у пары испытуемых изменение по x совпадает по направлению с изменением по y, то это свидетельствует о положительной связи, если не совпадает - то об отрицательной связи.

Коэффициенты корреляции были специально разработаны для численного определения силы и направления связи между двумя свойствами, измеренными в числовых шкалах (метрических или ранговых). Как уже упоминалось, максимальной силе связи соответствуют значения корреляции +1 (строгая прямая или прямо пропорциональная связь) и -1 (строгая обратная или обратно пропорциональная связь), отсутствию связи соответствует корреляция, равная нулю. Дополнительную информацию о силе связи дает значение коэффициента детерминации: это часть дисперсии одной переменной, которая может быть объяснена влиянием другой переменной.

9. Параметрические методы сравнения данных


Параметрические методы сравнения применяются в том случае, если ваши переменные были измерены в метрической шкале.

Сравнение дисперсий 2- х выборок по критерию Фишера.


Данный метод позволяет проверить гипотезу о том, что дисперсии 2-х генеральных совокупностей, из которых извлечены сравниваемые выборки, отличаются друг от друга. Ограничения метода - распределения признака в обеих выборках не должны отличаться от нормального.

Альтернативой сравнения дисперсий является критерий Ливена, для которого нет необходимости в проверке на нормальность распределения. Данный метод может применяться для проверки предположения о равенстве (гомогенности) дисперсий перед проверкой достоверности различия средних по критерию Стьюдента для независимых выборок разной численности.

This calculator below calculates Spearman"s rank correlation coefficient between two random variables. The theoretical part is traditional below the calculator.

add import_export mode_edit delete

Changes of random variables

arrow_upward arrow_downward arrow_upward arrow_downward
Items per page: 5 10 20 50 100 chevron_left chevron_right

Changes of random variables

Import data Import error

"One of the following characters is used to separate data fields: tab, semicolon (;) or comma(,)" Sample: -50.5;-50.5

Import Back Cancel

Digits after the decimal point: 4

Calculate

Spearman"s correlation coefficient

Save share extension

The method of Spearman"s rank correlation coefficient calculation is actually pretty simple. It"s like the Pearson correlation coefficient , but designed not for measurements of random variables only but for their ranking values .

We have only to understand what is the rank value and why all this is necessary.

If the elements of a variational series arranged in ascending or descending order, that rank of the element will be his number in ordered series.

For example, we have a variational series {17,26,5,14,21}. Let"s sort it"s elements in a descending order {26,21,17,14,5}. 26 has a rank of 1, 21 - rank of 2 and so on, Variational series of ranking values will look like this {3,1,5,4,2}.

I.e. when calculating Spearman"s coefficient initial variation series are converted into variational series of ranking values and then Pearson"s formula is applied to them.
.
There is one subtlety - the rank of the repeating values is taken as the average of the ranks. That is, for a series {17, 15, 14, 15}ranking series will look like {1, 2.5, 4, 2.5}, as the first element is 15 has a rank of 2, and the second - rank of 3, and.

If you don"t have the repeating values, that is, all the values of ranking series - the numbers between 1 and n, the Pearson"s formula can be simplified to

By the way, this formula is often given as the formula for calculating the Spearman"s coefficient.

What is the essence of the transition from the values themselves to their rank value?
When investigating the correlation of ranking values you can find how well the dependence of the two variables is described by a monotonic function.

The sign of the coefficient indicates the direction of the relationship between variables. If the sign is positive the values of Y has a tendency to increase with the increasement of X. If the sign is negative the values of Y has a tendency to decrease with the increasement of X. If the coefficient is 0 there is no tendency then. If the coefficient equals 1 or -1, the relationship between X and Y has an appearance of monotonic function, i.e. with the increasement of X, Y also increases and vice versa.

That is, unlike the Pearson"s correlation coefficient, which can detect only the linear relationship of one variable from another, Spearman"s correlation coefficient can detect monotonic dependence, where the direct linear relationship cannot be revealed.

Here"s an example.
Поясню на примере. Let"s suppose,we examine the function y=10/x.
We have the following measurements of X and Y
{{1,10}, {5,2}, {10,1}, {20,0.5}, {100,0.1}}
For this data, Pearson correlation coefficient is equal to -0.4686, i.e. the relationship is weak or absent. And Spearman"s correlation coefficient is strictly equal to -1, as if it"s hints to the researcher that Y has strongly negative monotonic dependence from X.

В случаях, если измерения исследуемых признаков проводятся в шкале порядка, или же форма взаимосвязи отличается от линейной, исследование взаимосвязи между двумя случайными величинами осуществляется с помощь ранговых коэффициентов корреляции. Рассмотрим коэффициент ранговой корреляции Спирмена. При его вычислении необходимо ранжировать (упорядочить) варианты выборки. Ранжированием называется группировка экспериментальных данных в определенном порядке, либо по возрастанию, либо по убыванию.

Проведение операции ранжирования осуществляется по следующему алгоритму:

1. Меньшему значению начисляется меньший ранг. Наибольшему значению начисляется ранг, соответствующий количеству ранжируемых значений. Наименьшему значению начисляется ранг равный 1. Например, если n=7, то наибольшее значение получит ранг под номером 7, за исключением случаев, которые предусмотрены вторым правилом.

2. Если несколько значений равны, то им начисляется ранг, представляющий собой среднее значение из тех рангов, которые они получили бы, если бы не были равны. В качестве примера рассмотрим упорядоченную по возрастанию выборку, состоящую из 7 элементов: 22, 23, 25, 25, 25, 28, 30. Значения 22 и 23 встречаются по одному разу, поэтому их ранги соответственно равны R22=1, а R23=2. Значение 25 встречается 3 раза. Если бы эти значения не повторялись, то их ранги были бы равными 3, 4, 5. Поэтому их ранг R25 равен среднему арифметическому 3, 4 и 5: . Значения 28 и 30 не повторяются, поэтому их ранги соответственно равны R28=6, а R30=7. Окончательно имеем следующее соответствие:

3. Общая сумма рангов должна совпадать с расчетной, которая определяется по формуле:

где n - общее количество ранжируемых значений.

Несовпадение реальной и расчетной сумм рангов будет свидетельствовать об ошибке, допущенной при начислении рангов или их суммировании. В этом случае необходимо найти и исправить ошибку.

Коэффициент ранговой корреляции Спирмена является методом, позволяющим определить силу и направленность взаимосвязи между двумя признаками или двумя иерархиями признаков. Применение коэффициента ранговой корреляции имеет ряд ограничений:

  • а) Предполагаемая корреляционная зависимость должна носить монотонный характер.
  • б) Объем каждой из выборок должен быть больше или равен 5. Для определения верхней границы выборки пользуются таблицами критических значений (Таблица 3 Приложения). Максимальное значение n в таблице - 40.
  • в) При проведении анализа вероятна возможность возникновения большого количества одинаковых рангов. В этом случае, необходимо вносить поправку. Наиболее благоприятным является случай когда, обе изучаемые выборки представляют собой две последовательности несовпадающих значений.

Для проведения корреляционного анализа исследователь должен располагать двумя выборками, которые могут быть ранжированы, например:

  • - два признака, измеренные в одной и той же группе испытуемых;
  • - две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же набору признаков;
  • - две групповые иерархии признаков;
  • - индивидуальная и групповая иерархии признаков.

Расчет начинаем с ранжирования изучаемых показателей отдельно по каждому из признаков.

Проведем анализ случая с двумя признаками, измеренными в одной и той же группе испытуемых. Сначала ранжируют индивидуальные значения по первому признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму признаку. Если меньшим рангам одного показателя соответствуют меньшие ранги другого показателя, а большим рангам одного показателя соответствуют большие ранги другого показателя, то два признака связаны положительно. Если же большим рангам одного показателя соответствуют меньшие ранги другого показателя, то два признака связаны отрицательно. Для нахождения rs, определяем разности между рангами (d) по каждому испытуемому. Чем меньше разности между рангами, тем ближе коэффициент ранговой корреляции rs будет к «+1». Если взаимосвязь отсутствует, то между ними не будет никакого соответствия, следовательно rs окажется близким к нулю. Чем больше разности между рангами испытуемых по двум переменным, тем ближе к «-1» будет значение коэффициента rs. Таким образом, коэффициент ранговой корреляции Спирмена является мерой любой монотонной зависимости между двумя исследуемыми признаками.

Рассмотрим случай с двумя индивидуальными иерархиями признаков, выявленными у двух испытуемых по одному и тому же набору признаков. В данной ситуации ранжируют индивидуальные значения, полученные каждым из двух испытуемым по определенной совокупности признаков. Признаку с самым низким значением необходимо присвоить первый ранг; признаку с более высоким значением - второй ранг и т.д. Следует обратить особое внимание на то, чтобы все признаки были измерены в одних и тех же единицах. Например, невозможно ранжировать показатели, если они выражены в различных по «цене» баллах, поскольку невозможно определить, какой из факторов будет занимать первое место по выраженности, пока все значения не будут приведены к единой шкале. Если признаки, имеющие низкие ранги у одного из испытуемых так же имеют низкие ранги у другого, и наоборот, то индивидуальные иерархии связаны положительно.

В случае с двумя групповыми иерархиями признаков, ранжируют средне-групповые значения, полученные в двух группах испытуемых по одинаковому для исследуемых групп, набору признаков. Далее следует придерживаемся алгоритма, приведенного в предыдущих случаях.

Проведем анализ случая с индивидуальной и групповой иерархией признаков. Начинают с того, что ранжируют отдельно индивидуальные значения испытуемого и средне-групповые значения по тому же набору признаков, которые получены, при исключении того испытуемого, который не участвует в средне-групповой иерархии, так как с ней будет сопоставляться его индивидуальная иерархия. Ранговая корреляция позволяет оценить степень согласованности индивидуальной и групповой иерархии признаков.

Рассмотрим, как определяется значимость коэффициента корреляции в перечисленных выше случаях. В случае с двумя признаками она будет определяться объемом выборки. В случае с двумя индивидуальными иерархиями признаков значимость зависит от количества признаков, входящих в иерархию. В двух последних случаях значимость обуславливается числом изучаемых признаков, а не численностью групп. Таким образом, значимость rs во всех случаях определяется числом ранжированных значений n.

При проверке статистической значимости rs пользуются таблицами критических значений коэффициента ранговой корреляции, составленных для различных количеств ранжируемых значений и разных уровней значимости. Если абсолютная величина rs, достигает критического значения или превышает его, то корреляция достоверна.

При рассмотрении первого варианта (случай с двумя признаками, измеренными в одной и той же группе испытуемых) возможны следующие гипотезы.

Н0: Корреляция между переменными x и y не отличается от нуля.

Н1: Корреляция между переменными x и y достоверно отличается от нуля.

Если мы работаем с любым из трех оставшихся случаев, то необходимо выдвинуть другую пару гипотез:

Н0: Корреляция между иерархиями x и y не отличается от нуля.

Н1: Корреляция между иерархиями x и y достоверно отличается от нуля.

Последовательность действий при вычислении коэффициента ранговой корреляции Спирмена rs такова.

  • - Определить, какие два признака или две иерархии признаков будут участвовать в сопоставлении как переменные x и y.
  • - Ранжировать значения переменной x, начисляя ранг 1 наименьшему значению, в соответствии с правилами ранжирования. Поместить ранги в первую колонку таблицы по порядку номеров испытуемых или признаков.
  • - Ранжировать значения переменной y. Поместить ранги во вторую колонку таблицы по порядку номеров испытуемых или признаков.
  • - Вычислить разности d между рангами x и y по каждой строке таблицы. Результаты поместить в следующую колонку таблицы.
  • - Вычислить квадраты разностей (d2). Полученные значения поместить в четвертую колонку таблицы.
  • - Вычислить сумму квадратов разностей? d2.
  • - При возникновении одинаковых рангов вычислить поправки:

где tx - объем каждой группы одинаковых рангов в выборке x;

ty - объем каждой группы одинаковых рангов в выборке y.

Вычислить коэффициент ранговой корреляции в зависимости от наличия или отсутствия одинаковых рангов. При отсутствии одинаковых рангов коэффициент ранговой корреляции rs рассчитать по формуле:

При наличии одинаковых рангов коэффициент ранговой корреляции rs рассчитать по формуле:

где?d2 - сумма квадратов разностей между рангами;

Tx и Ty - поправки на одинаковые ранги;

n - количество испытуемых или признаков, участвовавших в ранжировании.

Определить по таблице 3 Приложения критические значения rs, для данного количества испытуемых n. Достоверное отличие от нуля коэффициента корреляции будет наблюдаться при условии, если rs не меньше критического значения.

37. Коэффициент ранговой корреляции Спирмена.

С. 56 (64) 063.JPG

http://psystat.at.ua/publ/1-1-0-33

Коэффициент ранговой корреляции Спирмена используется в случаях, когда:
- переменные имеют ранговую шкалу измерения;
- распределение данных слишком отличается от нормального или вообще неизвестно;
- выборки имеют небольшой объём (N < 30).

Интерпретация рангового коэффициента корреляции Спирмена не отличается от коэффициента Пирсона, однако его смысл несколько отличен. Чтобы понять различие этих методов и логически обосновать области их применения сравним их формулы.

Коэффициент корреляции Пирсона:

Коэффициент корреляции Спирмена:

Как видим формулы значительно различаются. Сравним формулы

В формуле корреляции Пирсона используется среднее арифметическое и стандартное отклонение коррелируемых рядов, а в формуле Спирмена не используется. Таким образом, для получения адекватного результата по формуле Пирсона, необходимо, чтобы коррелируемые ряды были приближены к нормальному распределению (среднее и стандартное отклонение являются параметрами нормального распределения ). Для формулы Спирмена это не актуально.

Элементом формулы Пирсона является стандартизация каждого ряда в z-шкалу .

Как видим, перевод переменных в Z-шкалу присутствует в формуле коэффициента корреляции Пирсона. Соответственно, для коэффициента Пирсона абсолютно не имеет значение масштаб данных: к примеру, мы можем коррелировать две переменных, одна из которых имеет мин. = 0 и макс. = 1, а вторая мин. = 100 и макс. = 1000. Как бы не различался размах диапазона значений, все они будут переведены в стандартные z-значения одинаковые по своему масштабу.

В коэффициенте Спирмена такой нормализации не происходит, поэтому

ОБЯЗАТЕЛЬНЫМ УСЛОВИЕМ ИСПОЛЬЗОВАНИЯ КОЭФФИЦИЕНТА СПИРМЕНА ЯВЛЯЕТСЯ РАВЕНСТВО РАЗМАХА ДВУХ ПЕРЕМЕННЫХ.

Перед использованием коэффициента Спирмена для рядов данных с различным размахом, необходимо обязательно их ранжировать . Ранжирование приводит к тому, что значения этих рядов приобретают одинаковый минимум = 1 (минимальный ранг) и максимум, равный количеству значений (максимальный, последний ранг = N, т.е. максимальному количеству случаев в выборке).

В каких случаях можно обойтись без ранжирования

Это случаи, когда данные имеют исходно ранговую шкалу . К примеру, тест ценностных ориентаций Рокича.

Также, это случаи, когда количество вариантов значений невелико и в выборке присутствуют фиксированные минимум и максимум. К примеру, в семантическом дифференциале минимум = 1, максимум = 7.

Пример расчета рангового коэффициента корреляции Спирмена

Тест ценностных ориентаций Рокича был проведён на двух выборках Xи Y. Задача: узнать, насколько близки иерархии ценностей данных выборок (буквально – на сколько они похожи).

Полученное значение r=0,747 проверяется по таблице критических значений . Согласно таблице, при N=18, полученное значение достоверно на уровне p<=0,005

Ранговые коэффициенты корреляции по Спирману и Кендалу

Для переменных, принадлежащих к порядковой шкале или для переменных, не подчиняющихся нормальному распределению, а также для переменных принадлежащих к интервальной шкале, вместо коэффициента Пирсона рассчитывается ранговая корреляция по Спирману. Для этого отдельным значениям переменных присваиваются ранговые места, которые впоследствии обрабатываются с помощью соответствующих формул. Чтобы выявить ранговую корреляцию, уберите в диалоговом окне Bivariate Correlations... (Парные корреляции) метку для расчета корреляции по Пирсону, установленную по умолчанию. Вместо этого активируйте расчет корреляции Спирмана. Это расчет даст следующие результаты. Коэффициенты ранговой корреляции весьма близки к соответствующим значениям коэффициентов Пирсона (исходные переменные имеют нормальное распределение).

titkova-matmetody.pdf с. 45

Метод ранговой корреляции Спирмена позволяет определить тесноту (силу) и направление

корреляционной связи между двумя признаками или двумя профилями (иерархиями) признаков.

Для подсчета ранговой корреляции необходимо располагать двумя рядами значений,

которые могут быть проранжированы. Такими рядами значений могут быть:

1) два признака, измеренные в одной и той же группе испытуемых;

2) две индивидуальные иерархии признаков, выявленные у двух испытуемых по одному и тому же

набору признаков;

3) две групповые иерархии признаков,

4) индивидуальная и групповая иерархии признаков.

Вначале показатели ранжируются отдельно по каждому из признаков.

Как правило, меньшему значению признака начисляется меньший ранг.

В первом случае (два признака) ранжируются индивидуальные значения по первому

признаку, полученные разными испытуемыми, а затем индивидуальные значения по второму

признаку.

Если два признака связаны положительно, то испытуемые, имеющие низкие ранги по

одному из них, будут иметь низкие ранги и по другому, а испытуемые, имеющие высокие ранги по

одному из признаков, будут иметь по другому признаку также высокие ранги. Для подсчета rs

необходимо определить разности (d) между рангами, полученными данным испытуемым по обоим

признакам. Затем эти показатели d определенным образом преобразуются и вычитаются из 1. Чем

меньше разности между рангами, тем больше будет rs, тем ближе он будет к +1.

Если корреляция отсутствует, то все ранги будут перемешаны и между ними не будет

никакого соответствия. Формула составлена так, что в этом случае rs окажется близким к 0.

В случае отрицательной корреляции низким рангам испытуемых по одному признаку

будут соответствовать высокие ранги по другому признаку, и наоборот. Чем больше несовпадение

между рангами испытуемых по двум переменным, тем ближе rs к -1.

Во втором случае (два индивидуальных профиля ), ранжируются индивидуальные

значения, полученные каждым из 2-х испытуемым по определенному (одинаковому для них

обоих) набору признаков. Первый ранг получит признак с самым низким значением; второй ранг –

признак с более высоким значением и т.д. Очевидно, что все признаки должны быть измерены в

одних и тех же единицах, иначе ранжирование невозможно. Например, невозможно

проранжировать показатели по личностному опроснику Кеттелла (16PF), если они выражены в

"сырых" баллах, поскольку по разным факторам диапазоны значений различны: от 0 до 13, от 0 до

20 и от 0 до 26. Мы не можем сказать, какой из факторов будет занимать первое место по

выраженности, пока не приведем все значения к единой шкале (чаще всего это шкала стенов).

Если индивидуальные иерархии двух испытуемых связаны положительно, то признаки,

имеющие низкие ранги у одного из них, будут иметь низкие ранги и у другого, и наоборот.

Например, если у одного испытуемого фактор Е (доминантность) имеет самый низкий ранг, то и у

другого испытуемого он должен иметь низкий ранг, если у одного испытуемого фактор С

(эмоциональная устойчивость) имеет высший ранг, то и другой испытуемый должен иметь по

этому фактору высокий ранг и т.д.

В третьем случае (два групповых профиля), ранжируются среднегрупповые значения,

полученные в 2-х группах испытуемых по определенному, одинаковому для двух групп, набору

признаков. В дальнейшем линия рассуждений такая же, как и в предыдущих двух случаях.

В случае 4-ом (индивидуальный и групповой профили), ранжируются отдельно

индивидуальные значения испытуемого и среднегрупповые значения по тому же набору

признаков, которые получены, как правило, при исключении этого отдельного испытуемого – он

не участвует в среднегрупповом профиле, с которым будет сопоставляться его индивидуальный

профиль. Ранговая корреляция позволит проверить, насколько согласованы индивидуальный и

групповой профили.

Во всех четырех случаях значимость полученного коэффициента корреляции определяется

по количеству ранжированных значений N. В первом случае это количество будет совпадать с

объемом выборки n. Во втором случае количеством наблюдений будет количество признаков,

составляющих иерархию. В третьем и четвертом случае N – это также количество сопоставляемых

признаков, а не количество испытуемых в группах. Подробные пояснения даны в примерах. Если

абсолютная величина rs достигает критического значения или превышает его, корреляция

достоверна.

Гипотезы.

Возможны два варианта гипотез. Первый относится к случаю 1, второй – к трем остальным

Первый вариант гипотез

H0: Корреляция между переменными А и Б не отличается от нуля.

H2: Корреляция между переменными А и Б достоверно отличается от нуля.

Второй вариант гипотез

H0: Корреляция между иерархиями А и Б не отличается от нуля.

H2: Корреляция между иерархиями А и Б достоверно отличается от нуля.

Ограничения коэффициента ранговой корреляции

1. По каждой переменной должно быть представлено не менее 5 наблюдений. Верхняя

граница выборки определяется имеющимися таблицами критических значений.

2. Коэффициент ранговой корреляции Спирмена rs при большом количестве одинаковых

рангов по одной или обеим сопоставляемым переменным дает огрубленные значения. В идеале

оба коррелируемых ряда должны представлять собой две последовательности несовпадающих

значений. В случае, если это условие не соблюдается, необходимо вносить поправку на

одинаковые ранги.

Коэффициент ранговой корреляции Спирмена подсчитывается по формуле:

Если в обоих сопоставляемых ранговых рядах присутствуют группы одинаковых рангов,

перед подсчетом коэффициента ранговой корреляции необходимо внести поправки на одинаковые

ранги Та и Тв:

Та = Σ (а3 – а)/12,

Тв = Σ (в3 – в)/12,

где а – объем каждой группы одинаковых рангов в ранговом ряду А, в объем каждой

группы одинаковых рангов в ранговом ряду В.

Для подсчета эмпирического значения rs используют формулу:

38. Точечно-бисериальный коэффициент корреляции.

О корреляции вообще см. вопрос № 36 с. 56 (64) 063.JPG

harchenko-korranaliz.pdf

Пусть переменная X измерена в сильной шкале, а переменная Y – в дихотомической. Точечный бисериальный коэффициент корреляции rpb вычисляется по формуле:

Здесь x 1 – среднее значение по Х объектов со значением «единица» по Y;

x 0 – среднее значение по Х объектов со значением «ноль» по Y;

s х – среднее квадратическое отклонение всех значений по Х;

n 1 – число объектов «единица» по Y, n 0 - число объектов «ноль» по Y;

n = n 1 + n 0 – объем выборки.

Точечный бисериальный коэффициент корреляции можно рассчитать также с помощью других эквивалентных выражений:

Здесь x – общее среднее значение по переменной Х .

Точечный бисериальный коэффициент корреляции rpb изменяется в пределах от –1 до +1. Его значение равно нулю в том случае, если пере-менные с единицей по Y имеют среднее по Y , равное среднему переменных с нулем по Y .

Проверка гипотезы о значимости точечного бисериального коэффициента корреляции заключается в проверке нулевой гипотезы h 0 о равенстве генерального коэффициента корреляции нулю: ρ = 0, которая осуществляется с помощью критерия Стьюдента. Эмпирическое значение

сравнивается с критическими значениями t a (df ) для числа степеней свободы df = n – 2

Если выполняется условие | t | ≤ (df ), нулевая гипотеза ρ = 0 не от-вергается. Точечный биссериальный коэффициент корреляции значимо от-личается от нуля, если эмпирическое значение | t | попадает в критическую область, то есть если выполняется условие | t | > (n – 2). Достоверность связи, рассчитанной с помощью точечного бисериального коэффициента корреляции rpb , можно определить также с помощью критерия χ 2 для числа степеней свободы df = 2.

Точечно-бисериальная корреляция

Последующая модификация коэффициента корреляции произведения моментов получила отражение в точечно бисериальном r . Эта стат. показывает связь между двумя переменными, одна из к-рых предположительно непрерывна и нормально распределена, а др. яв-ся дискретной в точном смысле слова. Точечно-бисериальный коэффициент корреляции обозначается через r pbis Поскольку в r pbis дихотомия отражает подлинную природу дискретной переменной, а не яв-ся искусственной, как в случае r bis , его знак определяется произвольно. Поэтому для всех практ. целей r pbis рассматривается в диапазоне от 0,00 до +1,00.

Существует и такой случай, когда две переменные считаются непрерывными и нормально распределенными, но обе искусственно дихотомизированы, как в случае бисериальной корреляции. Для оценки связи между такими переменными применяется тетрахорический коэффициент корреляции r tet ,к-рый был тж выведен Пирсоном. Осн. (точные) формулы и процедуры для вычисления r tet достаточно сложны. Поэтому при практ. применении этого метода используются приближения r tet ,получаемые на основе сокращенных процедур и таблиц.

/on-line/dictionary/dictionary.php?term=511

ТОЧЕЧНО-БИСЕРИАЛЬНЫЙ КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ - это коэффициент корреляции между двумя переменными, одна из которых измерена в дихотомической шкале, а другая – в интервальной шкале. Применяется в классической и современной тестологии как показатель качества тестового задания – надежности-согласованности с общим баллом по тесту.

Для коррелирования переменных, измеренных в дихотомической и интервальной шкале используют точечно-бисериальный коэффициент корреляции .
Точечно-бисериальный коэффициент корреляции - это метод корреляционного анализа отношения переменных, одна из которых измерена в шкале наименований и принимает только 2 значения (к примеру, мужчины/женщины, ответ верный/ответ неверный, признак есть/признака нет), а вторая в шкале отношений или интервальной шкале. Формула расчета коэффициента точечно-бисериальной корреляции:

Где:
m1 и m0 - средние значения Х со значением 1 или 0 по Y.
σx – стандартное отклонение всех значений по Х
n1 ,n0 – количество значений Х с 1 или 0 по Y.
n – общее количество пар значений

Чаще всего данный вид коэффициента корреляции применяется для расчета связи пунктов теста с суммарной шкалой. Это один из видов проверки валидности.

39. Рангово-бисериальный коэффициент корреляции.

О корреляции вообще см. вопрос № 36 с. 56 (64) 063.JPG

harchenko-korranaliz.pdf с. 28

Рангово-бисериальный коэффициент корреляции, используемый в случаях, когда одна из переменных (Х ) представлена в порядковой шкале, а другая (Y ) – в дихотомической, вычисляется по формуле

.

Здесь – средний ранг объектов, имеющих единицу по Y ; – средний ранг объектов с нулем по Y , n – объем выборки.

Проверка гипотезы о значимости рангово-бисериального коэффи-циента корреляции осуществляется аналогично точечному биссериальному коэффициенту корреляции с помощью критерия Стьюдента с заменой в формулах r pb на r rb .

В тех случаях, когда одна переменная измеряется в дихотомической шкале (переменная X), а другая в ранговой шкале (переменная У), используется рангово-бисериальный коэффициент корреляции. Мы помним, что переменная X, измеренная в дихотомической шкале, принимает только два значения (кода) 0 и 1. Особо подчеркнем: несмотря на то что этот коэффициент изменяется в диапазоне от –1 до +1, его знак для интерпретации результатов не имеет значения. Это еще одно исключение из общего правила.

Расчет этого коэффициента производится по формуле:

где `X 1средний ранг по тем элементам переменной Y , которым соответствует код (признак) 1 в переменной Х ;

`X 0– средний ранг по тем элементам переменной Y, которым соответствует код (признак) 0 в переменной Х\

N – общее количество элементов в переменной X.

Для применения рангово-бисериального коэффициента корреляции необходимо соблюдать следующие условия:

1. Сравниваемые переменные должны быть измерены в разных шкалах: одна X – в дихотомической шкале; другая Y– в ранговой шкале.

2. Число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

3. Для оценки уровня достоверности рангово-бисериального коэффициента корреляции следует пользоваться формулой (11.9)и таблицей критических значений для критерия Стьюдентапри k = n – 2.

http://psystat.at.ua/publ/drugie_vidy_koehfficienta_korreljacii/1-1-0-38

Случаи, когда одна из переменных представлена в дихотомической шкале , а другая в ранговой (порядковой) , требуют применения коэффициента рангово-бисериальной корреляции:

rpb=2 / n * (m1 - m0)

где:
n – число объектов измерения
m1 и m0 - средний ранг объектов с 1 или 0 по второй переменной.
Данный коэффициент также применяется при проверке валидности тестов.

40. Коэффициент линейной корреляции.

О корреляции вообще (и в частности о линейной как раз) см. вопрос № 36 с. 56 (64) 063.JPG

КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ г-ПИРСОНА

r -Пирсона (Pearson r ) применяется для изучения взаимосвязи двух метричес- ких переменных, измеренных на одной и той же выборке. Существует множество ситуаций, в которых уместно его применение. Влияет ли интеллект на успе-ваемость на старших курсах университета? Связан ли размер заработной пла-ты работника с его доброжелательностью к коллегам? Влияет ли настроение школьника на успешность решения сложной арифметической задачи? Для ответа на подобные вопросы исследователь должен измерить два интересую-щих его показателя у каждого члена выборки. Данные для изучения взаимо-связи затем сводятся в таблицу, как в приведенном ниже примере.

ПРИМЕР 6.1

В таблице приведен пример исходных данных измерения двух показателей интел-лекта (вербального и невербального) у 20 учащихся 8-го класса.

Связь между этими переменными можно изобразить при помощи диаграммы рас-сеивания (см. рис. 6.3). Диаграмма показывает, что существует некоторая взаимо-связь измеренных показателей: чем больше значения вербального интеллекта, тем (преимущественно) больше значения невербального интеллекта.

Прежде чем дать формулу коэффициента корреляции, попробуем просле-дить логику ее возникновения, используя данные примера 6.1. Положение каждой /-точки (испытуемого с номером /) на диаграмме рассеивания отно-сительно остальных точек (рис. 6.3) может быть задано величинами и знака-ми отклонений соответствующих значений переменных от своих средних ве-личин: (xj - MJ и (у, -М у ). Если знаки этих отклонений совпадают, то это свидетельствует в пользу положительной взаимосвязи (большим значениям по х соответствуют большие значения по у или меньшим значениям по х со-ответствуют меньшие значения по у).

Для испытуемого № 1 отклонение от среднего по х и по у положительное, а для испытуемого № 3 и то и другое отклонения отрицательные. Следовательно, данные того и другого свидетельствуют о положительной взаимосвязи изучаемых призна-ков. Напротив, если знаки отклонений от средних по х и по у различаются, то это будет свидетельствовать об отрицательной взаимосвязи между признаками. Так, для испытуемого № 4 отклонение от среднего по х является отрицательным, по у - положительным, а для испытуемого № 9 - наоборот.

Таким образом, если произведение отклонений (х,- М х ) х (у, - М у ) поло-жительное, то данные /-испытуемого свидетельствуют о прямой (положи-тельной) взаимосвязи, а если отрицательное - то об обратной (отрицатель-ной) взаимосвязи. Соответственно, если х w у ъ основном связаны прямо пропорционально, то большинство произведений отклонений будет поло-жительным, а если они связаны обратным соотношением, то большинство произведений будет отрицательным. Следовательно, общим показателем для силы и направления взаимосвязи может служить сумма всех произведений отклонений для данной выборки:

При прямо пропорциональной связи между переменными эта величина является большой и положительной - для большинства испытуемых откло-нения совпадают по знаку (большим значениям одной переменной соответ-ствуют большие значения другой переменной и наоборот). Если же х и у име-ют обратную связь, то для большинства испытуемых большим значениям одной переменной будут соответствовать меньшие значения другой перемен-ной, т. е. знаки произведений будут отрицательными, а сумма произведений в целом будет тоже большой по абсолютной величине, но отрицательной по знаку. Если систематической связи между переменными не будет наблюдать-ся, то положительные слагаемые (произведения отклонений) уравновесятся отрицательными слагаемыми, и сумма всех произведений отклонений будет близка к нулю.

Чтобы сумма произведений не зависела от объема выборки, достаточно ее усреднить. Но мера взаимосвязи нас интересует не как генеральный параметр, а как вычисляемая его оценка - статистика. Поэтому, как и для формулы дис-персии, в этом случае поступим также, делим сумму произведений отклоне-ний не на N , а на TV- 1. Получается мера связи, широко применяемая в физи-ке и технических науках, которая называется ковариацией (Covahance ):


В психологии, в отличие от физики, большинство переменных измеряют-ся в произвольных шкалах, так как психологов интересует не абсолютное зна-чение признака, а взаимное расположение испытуемых в группе. К тому же ковариация весьма чувствительна к масштабу шкалы (дисперсии), в которой измерены признаки. Чтобы сделать меру связи независимой от единиц изме-рения того и другого признака, достаточно разделить ковариацию на соот-ветствующие стандартные отклонения. Таким образом и была получена фор- мула коэффициента корреляции К. Пирсона:

или, после подстановки выражений для о х и


Если значения той и другой переменной были преобразованы в г-значения по формуле


то формула коэффициента корреляции r-Пирсона выглядит проще (071.JPG):

/dict/sociology/article/soc/soc-0525.htm

КОРРЕЛЯЦИЯ ЛИНЕЙНАЯ - статистическая линейная связь непричинного характера между двумя количественными переменными х и у . Измеряется с помощью "коэффициента К.Л." Пирсона, который является результатом деления ковариации на стандартные отклонения обеих переменных:

,

где s xy - ковариация между переменными х и у ;

s x , s y - стандартные отклонения для переменных х и у ;

x i , y i - значения переменных х и у для объекта с номером i ;

x , y - средние арифметические для переменных х и у .

Коэффициент Пирсона r может принимать значения из интервала [-1; +1]. Значение r = 0 означает отсутствие линейной связи между переменными х и у (но не исключает статистической связи нелинейной). Положительные значения коэффициента (r > 0) свидетельствуют о прямой линейной связи; чем ближе его значение к +1, тем сильнее связь статистическая прямая. Отрицательные значения коэффициента (r < 0) свидетельствуют об обратной линейной связи; чем ближе его значение к -1, тем сильнее обратная связь. Значения r = ±1 означают наличие полной линейной связи, прямой или обратной. В случае полной связи все точки с координатами (x i , y i ) лежат на прямой y = a + bx .

"Коэффициент К.Л." Пирсона применяется также для измерения тесноты связи в модели регрессии линейной парной.

41. Корреляционная матрица и корреляционный граф.

О корреляции вообще см. вопрос № 36 с. 56 (64) 063.JPG

Корреляционная матрица. Часто корреляционный анализ включает в себя изучение связей не двух, а множества переменных, измеренных в количествен-ной шкале на одной выборке. В этом случае вычисляются корреляции для каждой пары из этого множества переменных. Вычисления обычно прово-дятся на компьютере, а результатом является корреляционная матрица.

Корреляционная матрица (Correlation Matrix ) - это результат вычисления корреляций одного типа для каждой пары из множества Р переменных, изме-ренных в количественной шкале на одной выборке.

ПРИМЕР

Предположим, изучаются связи между 5 переменными (vl, v2,..., v5; P = 5), изме-ренными на выборке численностью N=30 человек. Ниже приведена таблица ис-ходных данных и корреляционная матрица.

И
сходные данные:

Корреляционная матрица:

Нетрудно заметить, что корреляционная матрица является квадратной, симметрич-ной относительно главной диагонали (таккакг,у= /} у), с единицами на главной диа-гонали (так как г и = Гу = 1).

Корреляционная матрица является квадратной: число строк и столбцов равно числу переменных. Она симметрична относительно главной диагона-ли, так как корреляция х с у равна корреляции у с х. На ее главной диагонали располагаются единицы, так как корреляция признака с самим собой равна единице. Следовательно, анализу подлежат не все элементы корреляцион-ной матрицы, а те, которые находятся выше или ниже главной диагонали.

Количество коэффициентов корреляции, подлежащих анализу при изучении связей Рпризнаков определяется формулой: Р(Р- 1)/2. В приведенном выше примере количество таких коэффициентов корреляции 5(5 - 1)/2 = 10.

Основная задача анализа корреляционной матрицы - выявление структуры взаимосвязей множества признаков. При этом возможен визуальный анализ корреляционных плеяд - графического изображения структуры статистически значимых связей, если таких связей не очень много (до 10-15). Другой спо-соб - применение многомерных методов: множественного регрессионного, факторного или кластерного анализа (см. раздел «Многомерные методы...»). Применяя факторный или кластерный анализ, можно выделить группиров-ки переменных, которые теснее связаны друг с другом, чем с другими пере-менными. Весьма эффективно и сочетание этих методов, например, если признаков много и они не однородны.

Сравнение корреляций - дополнительная задача анализа корреляционной матрицы, имеющая два варианта. Если необходимо сравнение корреляций в одной из строк корреляционной матрицы (для одной из переменных), при-меняется метод сравнения для зависимых выборок (с. 148-149). При сравне-нии одноименных корреляций, вычисленных для разных выборок, применя-ется метод сравнения для независимых выборок (с. 147-148).

Методы сравнения корреляций в диагоналях корреляционной матрицы (для оценки стационарности случайного процесса) и сравнения нескольких корре-ляционных матриц, полученных для разных выборок (на предмет их одно-родности), являются трудоемкими и выходят за рамки данной книги. Позна-комиться с этими методами можно по книге Г. В. Суходольского 1 .

Проблема статистической значимости корреляций. Проблема заключается в том, что процедура статистической проверки гипотезы предполагает одно- кратное испытание, проведенное на одной выборке. Если один и тот же метод применяется многократно, пусть даже и в отношении различных переменных, то увеличивается вероятность получить результат чисто слу-чайно. В общем случае, если мы повторяем один и тот же метод проверки гипотезы к раз в отношении разных переменных или выборок, то при уста-новленной величине а мы гарантированно получим подтверждение гипоте-зы в ахк числе случаев.

Предположим, анализируется корреляционная матрица для 15 переменных, то есть вычислено 15(15-1)/2 = 105 коэффициентов корреляции. Для проверки гипотез установлен уровень а = 0, 05. Проверяя гипотезу 105 раз, мы пять раз (!) получим ее подтверждение независимо от того, существует ли связь на самом деле. Зная это и получив, скажем, 15 «статистически достоверных» коэффициентов корреляции, сможем ли мы сказать, какие из них получены случайно, а какие - отражают ре-альную связь?

Строго говоря, для принятия статистического решения необходимо умень-шить уровень а во столько раз, сколько гипотез проверяется. Но вряд ли это целесообразно, так как непредсказуемым образом увеличивается вероятность проигнорировать реально существующую связь (допустить ошибку II рода).

Одна только корреляционная матрица не является достаточным основанием для статистических выводов относительно входящих в нее отдельных коэффи- циентов корреляций!

Можно указать лишь один действительно убедительный способ решения этой проблемы: разделить выборку случайным образом на две части и прини-мать во внимание только те корреляции, которые статистически значимы в обеих частях выборки. Альтернативой может являться использование много-мерных методов (факторного, кластерного или множественного регрессион-ного анализа) - для выделения и последующей интерпретации групп статис-тически значимо связанных переменных.

Проблема пропущенных значений. Если в данных есть пропущенные значе-ния, то возможны два варианта расчета корреляционной матрицы: а) построч-ное удаление значений (Exclude cases listwise ); б) попарное удаление значений (Exclude cases pairwise ). При построчном удалении наблюдений с пропусками удаляется вся строка для объекта (испытуемого), который имеет хотя бы одно пропущенное значение по одной из переменных. Этот способ приводит к «пра-вильной» корреляционной матрице в том смысле, что все коэффициенты вы-числены по одному и тому же множеству объектов. Однако если пропущенные значения распределены случайным образом в переменных, то данный метод может привести к тому, что в рассматриваемом множестве данных не останется ни одного объекта (в каждой строке встретится, по крайней мере, одно пропу-щенное значение). Чтобы избежать подобной ситуации, используют другой способ, называемый попарным удалением. В этом способе учитываются только пропуски в каждой выбранной паре столбцов-переменных и игнорируются пропуски в других переменных. Корреляция для пары переменных вычисляет-ся по тем объектам, где нет пропусков. Во многих ситуациях, особенно когда число пропусков относительно мало, скажем 10%, и пропуски распределены достаточно хаотично, этот метод не приводит к серьезным ошибкам. Однако иногда это не так. Например, в систематическом смещении (сдвиге) оценки может «скрываться» систематическое расположение пропусков, являющееся причиной различия коэффициентов корреляции, построенных по разным под-множествам (например - для разных подгрупп объектов). Другая проблема, связанная с корреляционной матрицей, вычисленной при попарном удалении пропусков, возникает при использовании этой матрицы в других видах анали-за (например, в множественном регрессионном или факторном анализе). В них предполагается, что используется «правильная» корреляционная матрица с определенным уровнем состоятельности и «соответствия» различных коэффи-циентов. Использование матрицы с «плохими» (смещенными) оценками приводит к тому, что программа либо не в состоянии анализировать такую матри-цу, либо результаты будут ошибочными. Поэтому, если применяется попарный метод исключения пропущенных данных, необходимо проверить, имеются или нет систематические закономерности в распределении пропусков.

Если попарное исключение пропущенных данных не приводит к какому-либо систематическому сдвигу средних значений и дисперсий (стандартных отклонений), то эти статистики будут похожи на аналогичные показатели, вы-численные при построчном способе удаления пропусков. Если наблюдается значительное различие, то есть основание предполагать наличие сдвига в оцен-ках. Например, если среднее (или стандартное отклонение) значений перемен-ной А, которое использовалось при вычислении ее корреляции с переменной В, намного меньше среднего (или стандартного отклонения) тех же значений переменной А, которые использовались при вычислении ее корреляции с пе-ременной С, то имеются все основания ожидать, что эти две корреляции (А-В нА-С) основаны на разных подмножествах данных. В корреляциях будет сдвиг, вызванный неслучайным расположением пропусков в значениях переменных.

Анализ корреляционных плеяд. После решения проблемы статистической зна-чимости элементов корреляционной матрицы статистически значимые корре-ляции можно представить графически в виде корреляционной плеяды или пле-яд. Корреляционная плеяда - это фигура, состоящая из вершин и соединяющих их линий. Вершины соответствуют признакам и обозначаются обычно цифра-ми - номерами переменных. Линии соответствуют статистически достоверным связям и графически выражают знак, а иногда - и /j-уровень значимости связи.

Корреляционная плеяда может отра-жать все статистически значимые связи корреляционной матрицы (иногда называ-ется корреляционным графом ) или только их содержательно выделенную часть (напри-мер, соответствующую одному фактору по результатам факторного анализа).

ПРИМЕР ПОСТРОЕНИЯ КОРРЕЛЯЦИОННОЙ ПЛЕЯДЫ


Подготовка к проведению государственной (итоговой) аттестации выпускников: формирования базы ЕГЭ (общий список участников ЕГЭ всех категорий с указанием предметов) – с учетом резервных дней в случае совпадения предметов;

  • План работы (27)

    Решение

    2. Деятельность ОУ по совершенствованию содержания и оценке качества по предметам естественно-математического образования МОУ СОШ № 4, Литвиновская, Чапаевская,