Открытие электромагнитной индукции сделало возможным появление. Явление электромагнитной индукции. Открытие, опыт, применение. Фарадей. открытие электромагнитной индукции


В 1821 г. Майкл Фарадей записал в своем дневнике: «Превратить магнетизм в электричество». Через 10 лет эта задача была им решена.
Открытие Фарадея
Не случайно первый и самый важный шаг в открытии новых свойств электромагнитных взаимодействий был сделан основоположником представлений об электромагнитном поле - Фарадеем. Фарадей был уверен в единой природе электрических и магнитных явлений. Вскоре после открытия Эрстеда он писал: «...представляется весьма необычным, чтобы, с одной стороны, всякий электрический ток сопровождался магнитным действием соответствующей интенсивности, направленным под прямым углом к току, и чтобы в то же время в хороших проводниках электричества, помещенных в сферу этого действия, совсем не индуцировался ток, не возникало какое-либо ощутимое действие, эквивалентное по силе такому току». Упорный труд в течение десяти лет и вера в успех привели Фарадея к открытию, которое впоследствии легло в основу устройства генераторов всех электростанций мира, превращающих механическую энергию в энергию электрического тока . (Источники, работающие на других принципах: гальва-нические элементы, аккумуляторы, термо- и фотоэлементы - дают ничтожную долю вырабатываемой электрической энер-гии.)
Долгое время взаимосвязь электрических и магнитных явлений обнаружить не удавалось. Трудно было додуматься до главного: только меняющееся во времени магнитное поле может возбудить электрический ток в неподвижной катушке или же сама катушка должна двигаться в магнитном поле.
Открытие электромагнитной индукции , как назвал Фарадей это явление, было сделано 29 августа" 1831 г. Редкий случай, когда столь точно известна дата нового замечательного открытия. Вот краткое описание первого опыта, данное самим Фарадеем.
«На широкую деревянную катушку была намотана медная проволока длиной в 203 фута, и между витками ее намотана проволока такой же длины, но изолированная от первой хлоп-чатобумажной нитью. Одна из этих спиралей была соединена с гальванометром, а другая - с сильной батареей, состоящей из 100 пар пластин... При замыкании цепи удалось заметить внезапное, но чрезвычайно слабое действие на гальванометр, и то же самое замечалось при прекращении тока. При непрерывном же прохождении тока через одну из спиралей не удавалось отметить ни действия на гальванометр, ни вообще какого-либо индукционного действия на другую спираль, несмо- Рис. 5.1
тря на то что нагревание всей спирали, соединенной с батареей, и яркость искры, проскакивающей между углями, свидетельствовали о мощности батареи».
Итак, первоначально была открыта индукция в неподвижных друг относительно друга проводниках при замыкании и размыкании цепи. Затем, ясно понимая, что сближение или удаление проводников с током должно приводить к тому же результату, что и замыкание и размыкание цепи, Фарадей с помощью опытов доказал, что ток возникает при перемещении катушек относительно друг друга (рис. 5.1). Знакомый с трудами Ампера, Фарадей понимал, что магнит - это совокупность маленьких токов, циркулирующих в молекулах. 17 октября, как зарегистрировано в его лабораторном журнале, был обнаружен индукционный ток в катушке во время вдвигания (или выдвигания) магнита (рис. 5.2). В течение одного месяца Фарадей опытным путем открыл все существен- ные особенности явления электромагнитной индукции. Оста-валось только придать закону строгую количественную форму и полностью вскрыть физическую природу явления.
Уже сам Фарадей уловил то общее, от чего зависит появление индукционного тока в опытах, которые внешне выглядят по-разному.
В замкнутом проводящем контуре возникает ток при изменении числа линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром. И чем быстрее меняется число линий магнитной индукции, тем больше возникающий ток. При этом причина изменения числа линий магнитной индукции совершенно безразлична. Это может быть и изменение числа линий магнитной индукции, прони-зывающих неподвижный проводник вследствие изменения силы тока в соседней катушке, и изменение числа линий вследствие движения контура в неоднородном магнитном поле, густота линий которого меняется в пространстве (рис. 5.3).
Фарадей не только открыл явление, но и первым сконструировал несовершенную пока еще модель генератора электрического тока, превращающего механическую энергию вращения в ток. Это был массивный медный диск, вращающийся между полюсами сильного магнита (рис. 5.4). Присоединив ось и край диска к гальванометру, Фарадей обнаружил откло-
В
\

\
\
\
\
\
\
\L

S нение стрелки. Ток был, правда, слаб, но найденный принцип позволил впоследствии построить мощные генераторы. Без них электричество и по сей день было бы мало кому доступной роскошью.
В проводящем замкнутом контуре возникает электрический ток, если контур находится в переменном магнитном поле или движется в постоянном во времени поле так, что число линий магнитной индукции, пронизывающих контур, меняется. Это явление называется электромагнитной индукцией.

Примером может служить вопрос. В этом контексте мы можем говорить о табу. Есть определенные области, которые будут табу для большинства, что не означает, что не будет ни одного, третьего, третьего ученого, который справится с этим явлением с любопытством человека.

Эти социальные условия делают большинство людей неинтересными в этом. Р: И это только вопрос. Пример примерки также показывает страх не дискредитировать. Д-р Марек Спира: Сегодня мы стремимся свергнуть все табу. С одной стороны, это знание истины, а с другой - уважение к определенным ценностям, чье свержение только ведет к разрушению общественного порядка. Любопытство человека настолько велико, что оно превосходит все границы. По своей природе человеку не нравится табу. И в этом смысле стремление к истине не знает границ, которые существуют, конечно, но они постоянно движутся.

Новый период в развитии физической науки начинается с гениального открытия Фарадеем электромагнитной индукции. Именно в этом открытии ярко проявилась способность науки обогащать технику новыми идеями. Уже сам Фарадей предвидел на основе своего открытия существование электромагнитных волн . 12 марта 1832 г. он запечатал конверт с надписью "Новые воззрения, подлежащие в настоящее время хранению в запечатанном конверте в архивах Королевского общества". Этот конверт был вскрыт в 1938 г. Оказалось, что Фарадей вполне ясно представлял, что индукционные действия распространяются с конечной скоростью волновым способом. "Я считаю возможным применить теорию колебаний к распространению электрической индукции",- писал Фарадей. При этом он указывал, что "на распространение магнитного воздействия требуется время, т. е. при воздействии магнита на другой отдаленный магнит или кусок железа влияющая причина (которую я позволю себе назвать магнетизмом) распространяется от магнитных тел постепенно и для своего распространения требует определенного времени, которое, очевидно, окажется весьма незначительным. Я полагаю также, что электрическая индукция распространяется точно таким же образом. Я полагаю, что распространение магнитных сил от магнитного полюса похоже на колебание взволнованной водной поверхности или же на звуковые колебания частиц воздуха".

Здесь возникает вопрос, узнаем ли мы когда-нибудь полную правду. Зная человеческую природу можно сказать, что, хотя это невозможно, мы всегда будем стремиться к этому. Однако есть опасность, что мы будем игнорировать эту тайну. Находясь на определенном этапе знания, мы можем заключить, что мы уже все знаем. Между тем, идет катастрофа, и вопрос в том, как мы можем ее отпустить? Возможно, это было из-за пренебрежения силами природы, силами природы. Примером может быть изобретатель компьютера, который в прошлом столетии считал, что приобретение знаний в компьютере будет неограниченным.

Фарадей понимал всю важность своей идеи и, не имея возможности проверить ее экспериментально, решил с помощью этого конверта "закрепить открытие за собой и, таким образом, иметь право, в случае экспериментального подтверждения, объявить эту дату датой своего открытия". Итак, 12 марта 1832 г. человечество впервые пришло к идее существования электромагнитных волн. С этой даты начинается история открытия радио.

Спустя годы после этого открытия, имея сегодня ноутбуки, это было заблуждением. Насколько масштабы нашего невежества увеличились по мере увеличения количества вопросов. Мы, физики, уклоняемся от земли. Предположим, мы хотим лететь в галактику далеко от Земли на несколько световых лет. Поскольку мы не можем построить космический корабль, который движется со скоростью выше скорости света, для достижения этой галактики недостаточно одного поколения космонавтов. Хотя можно представить себе космическое путешествие многих поколений космонавтов, но это возможно только в научной фантастике.

Но открытие Фарадея имело важное значение не только в истории техники. Оно оказало огромное влияние и на развитие научного миропонимания. С этого открытия в физику входит новый объект - физическое поле. Таким образом, открытие Фарадея принадлежит к тем фундаментальным научным открытиям, которые оставляют заметный след во всей истории человеческой культуры.

Именно эти константы, известные нам сегодня, определяют пределы познания. Если мы рассмотрим Большой взрыв, мы должны помнить, что наши знания до сих пор не доходят до того, что плотность материи несравнима с той, с которой мы имеем дело сегодня и которую мы не можем воспроизвести в наших условиях.

Мы не знаем эту «взрывную» физику, поэтому мы не знаем этих физических констант, если бы они были. Н.: Мы также не уверены, что сегодняшняя физика является конечной. У нас был Ньютон, который позже был проверен Эйнштейном, поэтому мы можем заключить, что Эйнштейн будет проверен кем-то другим.

Сын лондонского кузнеца переплетчик родился в Лондоне 22 сентября 1791 г. Гениальный самоучка не имел возможности даже закончить начальную школу и проложил путь в науку сам. Во время учения переплетному делу он читал книги, в особенности по химии, сам проделывал химические опыты. Слушая публичные лекции знаменитого химика Дэви, он окончательно убедился в том, что его призвание - наука, и обратился к нему с просьбой принять на работу в Королевский институт. С 1813 г., когда Фарадей был принят в институт лаборантом, и до самой смерти (25 августа 1867 г.) он жил наукой. Уже в 1821 г., когда Фарадей получил электромагнитное вращение, он поставил своей целью "превратить магнетизм в электричество". Десять лет поисков и напряженного труда увенчались открытием 29 августа 1871 г. электромагнитной индукции.

На этой основе была создана специальная теория относительности, уже неоднократно подтвержденная экспериментально. Однако, если одна из этих парадигм терпит неудачу, у нас будет новая физика. Если мы говорим, что мы знаем вселенную, природу, что мы знаем, что это было раньше, мы говорим это, потому что указанные физические константы не меняют своих значений с течением времени. Эксперименты, которые пытаются подорвать эти твердые вещества - и как и как они проводятся - не убедительны.

На самом деле мы можем сказать, что из определенной точки мы знаем, что физические законы, регулирующие Вселенную, уже не изменились - эти константы все те же. Есть ли секреты, с которыми мы не хотим встречаться? Кант говорил о двух типах метафизики - метафизике как о науке, которая не существует, а метафизике, как о естественной тенденции, которая заставляет нас нарушать табу.

"Двести три фута медной проволоки в одном куске были намотаны на большой деревянный барабан; другие двести три фута такой же проволоки были изолированы в виде спирали между витками первой обмотки, причем металлический контакт был устранен посредством шнурка. Одна из этих спиралей была соединена с гальванометром, а другая - с хорошо заряженной батареей из ста пар пластин в четыре квадратных дюйма с двойными медными пластинами. При замыкании контакта наблюдалось временное, но очень слабое действие на гальванометр, и подобное же слабое действие имело место при размыкании контакта с батареей". Так описал Фарадей свои первый опыт по индукции токов. Он назвал этот вид индукции вольта-электрической индукцией. Далее он описывает свой основной опыт с железным кольцом - прототипом современного трансформатора.

Границы существуют, но человеческий разум имеет естественную потребность задавать вопросы, на которые нельзя ответить эмпирически. Это не роскошь, а обязанность человека найти ее. Когда-то было убеждение, что слишком много любознательности оставляет нас от Бога. Мы сами создали табу - Бог не может быть известен, потому что мы потеряем веру. Аутентичные люди, которых уважают, прежде всего, доверяют, и их смирение было обусловлено культурным контекстом. Образованный человек начал уходить от Бога, утверждая, что он не поверит в это «суеверие».

Было много недоразумений, потому что иногда мы не ценили поиск истины. Христианство никогда официально не декларировало такую ​​формулу, потому что вера нуждается в помощи разума, чтобы знать истину и даже спорить с Господом Богом. Можем ли мы действительно познакомиться с ним? Это еще одна проблема, но она не освобождает нас от обязанности постоянного поиска, потому что у нас есть причина. Церковь сегодня повторяет, что между верой и разумом нет противоречия. Даже если он победит некоторые догмы?

"Из круглого брускового мягкого железа было сварено кольцо; толщина металла была равна семи восьмым дюйма, а наружный диаметр кольца - шести дюймам. На одну часть этого кольца были намотаны три спирали содержащие каждая около двадцати четырех футов медной проволоки, толщиной в одну двадцатую дюйма. Спирали были изолированы от железа и друг от друга..., занимая приблизительно девять дюймов по длине кольца Ими можно было пользоваться по отдельности и в соединении; эта группа обозначена буквой А. На другую часть кольца было намотано таким же способом около шестидесяти футов такой же медной проволоки в двух кусках, которая образовывала спираль В, имевшую одинаковое направление со спиралями А, но отделенную от них на каждом конце на протяжении приблизительно полудюйма голым железом.

С.: Нам не нужно бояться, разум не может отменить любую догму, и если это произойдет, это означает, что нам не нужно иметь дело с догмой, но с человеческой формулой без покрытия. Причина состоит в том, чтобы уничтожить ложь, но истина никогда не терпит неудачу. Мы знаем это из истории Церкви, даже если это было очень сложно, Церковь смогла очистить себя от лжи, и мы этим гордимся.

Иллюстрацией может служить пример взаимоотношений экипажа двух космических кораблей, после возвращения экипажа одного из них было сказано: Бога нет, а другого - настолько прекрасного, что он может быть создан только Богом. Так что, если есть табу вообще, то это временное существо из-за культурных и социальных условий, которое в основном связано с опасениями иметь дело с чем-то рискованным с точки зрения потери научной позиции. Это волшебное слово - организация - имеет свое происхождение, остается вопрос - что?

Спираль В соединялась медными проводами с гальванометром, помещенном на расстоянии трех футов от железа. Отдельные спирали соединялись концы с концами так, что образовывали общую спираль, концы которой соединялись с батареей из десяти пар пластин в четыре квадратных дюйма. Гальванометр реагировал немедленно, и притом значительно сильнее чем это наблюдалось, как описано выше, при пользовании в десять раз более мощной спиралью, но без железа; однако, несмотря на сохранение контакта, действие прекращалось. При размыкании контакта с батареей стрелка снова сильно отклонялась, но в направлении, противоположном тому, которое индуцировалось в первом случае".

Поэтому Бог знает вещи такими, какие они есть, и мы такие, какие они есть. Р.: Вы можете не согласиться со мной, но что-то, что невозможно проверить экспериментально, будет всегда труднее принять. Особенно в области физики. Н.: Тот же Кант говорит: у меня ограниченные знания, чтобы освободить место для веры. Там, где есть границы знания, начинается моя вера.

Н.: Причины для этого ученого заключаются в следующем: все доказательства существования Бога были ложными, так что Бога нет. Тем временем только методология проверяется следующим образом: все доказательства существования Бога были ложными, но никаких заключений о его существовании или его существовании не может быть сделано. И это действительно выходит за рамки компетенции, но здесь также есть огромная проблема - правильная методология исследования: правильная или неправильная, это касается каждой области, будь то физика, астрономия, философия или теология.

Фарадей исследовал далее непосредственным опытом влияние железа, внося внутрь полой катушки железный стержень, в этом случае "индуцированный ток оказывал на гальванометр очень сильное действие". "Подобное действие было затем получено при помощи обыкновенных магнитов ". Фарадей назвал это действие магнитоэлектрической индукцией, полагая, что природа вольта-электрической и магнитоэлектрической индукции одинакова.

Почему он используется для обнаружения секретов - естественной необходимости углублять знания, прогресс или удовлетворять субъективные потребности отдельных исследователей? Это можно увидеть на примере неингибированных так называемых. основные исследования. Их природа заключается в том, чтобы открыть секреты природы, независимо от часто используемого стимула для их непосредственного использования. Когда Фарадей обнаружил явление электромагнитной индукции, его спросили, каково это было бы иметь человечество?

Он уклончиво сказал, что вы наверняка заплатите налоги и не обратитесь к научной стороне открытия. Его субъективная потребность заключалась в желании узнать и удовлетворении, которое пришло от него. Мне кажется, что использование полезности исследования не оправдано.

Все описанные опыты составляют содержание первого и второго разделов классического труда Фарадея "Экспериментальные исследования по электричеству", начатого 24 ноября 1831 г. В третьем разделе этой серии "О новом электрическом состоянии материи" Фарадей впервые пытается описать новые свойства тел, проявляемые в электромагнитной индукции. Он называет это обнаруженное им свойство "электротоническим состоянием". Это первый зародыш идеи поля, сформировавшейся позднее у Фарадея и впервые точно сформулированной Максвеллом. Четвертый раздел первой серии посвящен объяснению явления Араго. Фарадей правильно причисляет это явление к индукционным и пытается с помощью этого явления "получить новый источник электричества". При движении медного диска между полюсами магнита он получил ток в гальванометре при помощи скользящих контактов. Это была первая динамомашина. Фарадей резюмирует результаты своих опытов следующими словами: "Этим было показано, таким образом, что можно создать постоянный ток электричества при помощи обыкновенного магнита". Из своих опытов по индукции в движущихся проводниках Фарадей вывел зависимость между полюсностью магнита, движущимся проводником и направлением индуцированного тока, т. е. "закон, управляющий получением электричества посредством магнитоэлектрической индукции". В результате своих исследований Фарадей установил, что "способность индуцировать токи проявляется по окружности вокруг магнитной равнодействующей или силовой оси точно так, как расположенный по окружности магнетизм возникает вокруг электрического тока и им обнаруживается" * .

Пусть университет в фундаментальных исследованиях продолжит задавать вопросы о том, почему и открывать новые законы или правила, а колледжи технического использования должны использовать их, чтобы сделать жизнь проще, удобнее, интереснее, привлекательно и т.д. неправильная передача этого подразделения не принесет никакой пользы. С.: Поиск истины бескорыстен. Ребенок поднимает тысячи вопросов, и родители отвечают на них. Когда Колумб отправился в путешествие по всему миру, его спросили, почему он едет туда.

Ибо весь мир был сотворен. Но ему нужно было знать, текла для себя. Он убивает нас утверждением, что все должно быть полезно. Ибо в этом случае истина трактуется инструментально, зная, что тайна также играет важную роль. Вопрос о смысле человеческой жизни становится в нашей культуре совершенно бесполезным. Но, с другой стороны, если бы мы не задавали этот вопрос, наша жизнь была бы бессмысленной. Во-первых, есть самоотверженность, и тогда может оказаться, что истина по-разному используется во благо личной, социальной, экономической, политической жизни.

* (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 57. )

Другими словами, вокруг переменного магнитного потока возникает вихревое электрическое поле, подобно тому как вокруг электрического тока возникает вихревое магнитное поле. Этот фундаментальный факт был обобщен Максвеллом в виде его двух уравнений электромагнитного поля .

Для каждого открытия вам нужно быть хорошо подготовленным. Каждое открытие, даже так называемая медиальная катастрофа, покрывается огромными знаниями и опытом исследователя. Только огромные знания, воображение и выход за рамки традиционных рамок научных исследований позволяют увидеть нечто новое, новое, неизвестное, а затем называемое открытием. Коперника осудили не потому, что он ему не нравился, например, он был из Торунь, а потому, что он не мог понять, что Библию нельзя читать буквально. Часто исследователь сталкивается с вульгарным подходом к обучению, знаниям и непониманию.

Изучению явлений электромагнитной индукции, в особенности индукционного действия магнитного поля Земли, посвящена также вторая серия "Исследований", начатая 12 января 1832 г. Третью серию, начатую 10 января 1833 г., Фарадей посвящает доказательству тождества различных видов электричества: электростатического, гальванического, животного, магнитоэлектрического (т. е. получаемого посредством электромагнитной индукции). Фарадей приходит к выводу, что электричество, получаемое различными способами, качественно одинаково, разница в действиях только количественная. Этим был нанесен последний удар концепции различных "флюидов" смоляного и стеклянного электричества, гальванизма, животного электричества. Электричество оказалось единой, но полярной сущностью.

Иногда первооткрыватель опережает свое время, только новое поколение принимает его открытие. У нас также сегодня есть естественная тенденция комфортно укладывать мир в разные стороны, так что нам не нужно думать, просто чтобы потреблять. Примером может служить Джеймс Клерк Максвелл, чье знаменитое уравнение - наша цивилизация; Без них было бы трудно представить сегодняшние успехи и развитие. Однако понимание Максвелла механизма электромагнитного распространения не вписывается в сегодняшнюю интерпретацию этого явления.

Кроме того, Оливье Хевисайде, еще один ученый и математик, сделал его математические и математические формулы очень полезными. Это пример сущности и рода преемственности науки: вклад в универсальное знание имеет много ученых, даже «самых маленьких». Разве это не утешительно в эпоху очередного унижения академического мира? Каковы секреты современной науки , с которыми сталкиваются самые большие исследовательские возможности?

Весьма важна пятая серия "Исследований" Фарадея, начатая 18 июня 1833 г. Здесь Фарадей начинает свои исследования электролиза, приведшие его к установлению знаменитых законов, носящих его имя. Исследования эти были продолжены в седьмой серии, начатой 9 января 1834 г. В этой последней серии Фарадей предлагает новую терминологию: полюса, подводящие ток в электролит, он предлагает называть электродами, положительный электрод называть анодом, а отрицательный - катодом, частицы отлагаемого вещества, идущие к аноду он называет анионами, а частицы, идущие к катоду,- катионами . Далее, ему принадлежат термины электролит для разлагаемых веществ, ионы и электрохимические эквиваленты. Все эти термины прочно удержались в науке. Фарадей делает правильный вывод из найденных им законов, что можно говорить о каком-то абсолютном количестве электричества, связанном с атомами обычной материи. "Хотя мы ничего не знаем о том, что такое атом,- пишет Фарадей,- но мы невольно представляем себе какую-то малую частичку, которая является нашему уму, когда мы о ней думаем; правда, в таком же или в еще большем неведении мы находимся относительно электричества, мы даже не в состоянии сказать, представляет ли оно собою особую материю или материи, или же просто движение обыкновенного вещества, или еще вид какой-то силы или агента; тем не менее имеется огромное количество фактов, заставляющих нас думать, что атомы материи каким-то образом одарены электрическими силами или связаны с ними и им они обязаны своими наиболее замечательными качествами, а в том числе своим химическим сродством друг к другу" * .

Ученые все еще задаются вопросом, почему заряд протона положителен, а электрон отрицателен? Какие свойства имеет антиматерия? Как ведет себя материал, известный при очень высоких температурах? Эти вопросы действительно имеют значение. Мы говорим о температурах, сравнимых с внутренней температурой Солнца. Это огромная проблема для физиков, очень важная в контексте поиска новых источников энергии.

Чтобы проиллюстрировать важность этой проблемы для человечества, достаточно привести одну из оценок. В ситуации такого большого прогресса науки, использования природы в служении человечеству проблема остается человеком, который все больше и больше путается. Изменения начинают размываться. Неизведанное развитие науки не оказывает отрицательного влияния на интеллектуальное развитие обществ, но наоборот - негативные явления, такие как вторичная неграмотность, размножаются.

* (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 335. )

Таким образом, Фарадей отчетливо высказал идею "электрификации" материи, атомного строения электричества, причем атом электричества, или, как выражается Фарадей, "абсолютное количество электричества", оказывается "столь же определенным по своему действию, как любое из тех количеств, которые, оставаясь связанными с частицами материи, сообщают им их химическое сродство". Элементарный электрический заряд, как показало дальнейшее развитие физики, действительно может быть определен из законов Фарадея.

Весьма важное значение имела девятая серия "Исследований" Фарадея. В этой серии, начатой 18 декабря 1834 г., шла речь о явлениях самоиндукции, об экстратоках замыкания и размыкания. Фарадей указывает при описании этих явлений, что хотя им присущи черты инерции, однако от механической инерции явление самоиндукции отличает тот факт, что они зависят от формы проводника. Фарадей отмечает, что "экстраток тождествен с... индуцированным током" * . В результате у Фарадея сложилось представление о весьма широком значении процесса индукции. В одиннадцатой серии своих исследований, начатой 30 ноября 1837 г., он утверждает: "Индукция играет самую общую роль во всех электрических явлениях, участвуя, по-видимому, в каждом из них, и носит в действительности черты первейшего и существенного начала" ** . В частности, по мнению Фарадея, всякий процесс зарядки есть процесс индукции, смещения противоположных зарядов: "вещества не могут быть заряжены абсолютно, а только относительно, по закону, тождественному с индукцией. Всякий заряд поддерживается индукцией. Все явления напряжения включают начало индукций" *** . Смысл этих утверждений Фарадея тот, что всякое электрическое поле ("явление напряжения" - по терминологии Фарадея) обязательно сопровождается индукционным процессом в среде ("смещением" - по позднейшей терминологии Максвелла). Этот процесс определяется свойствами среды, ее "индуктивной способностью", по терминологии Фарадея, или "диэлектрической проницаемостью", по современной терминологии. Фарадей опытом со сферическим конденсатором определил диэлектрическую проницаемость ряда веществ по отношению к воздуху. Эти эксперименты укрепили Фарадея в мысли о существенной роли среды в электромагнитных процессах.

* (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 445. )

** (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 478. )

*** (М. Фарадей, Экспериментальные исследования по электричеству, т. I, Изд. АН СССР, 1947, стр. 487. )

Закон электромагнитной индукции был существенно развит русским физиком Петербургской Академии Эмилием Христиановичем Ленцем (1804-1865). 29 ноября 1833 г. Ленц доложил Академии наук свое исследование "Об определении направления гальванических токов, возбуждаемых электродинамической индукцией". Ленц показал, что магнитоэлектрическая индукция Фарадея теснейшим образом связана с электромагнитными силами Ампера. "Положение, посредством которого магнитоэлектрическое явление сводится к электромагнитному, заключается в следующем: если металлический проводник движется поблизости от гальванического тока или магнита, то в нем возбуждается гальванический ток такого направления, что если бы данный проводник был неподвижным, то ток мог бы обусловить его перемещение в противоположную сторону; при этом предполагается, что покоящийся проводник может перемещаться только в направлении движения или в противоположном направлении" * .

* (Э. X. Ленц, Избранные труды, Изд. АН СССР, 1950, стр. 148-149. )

Этот принцип Ленца раскрывает энергетику индукционных процессов и сыграл важную роль в работах Гельмгольца по установлению закона сохранения энергии. Сам Ленц из своего правила вывел хорошо известный в электротехнике принцип обратимости электромагнитных машин: если вращать катушку между полюсами магнита, она генерирует ток; наоборот, если в нее послать ток, она будет вращаться. Электродвигатель можно обратить в генератор и наоборот. Изучая действие магнитоэлектрических машин, Ленц открывает в 1847 г. реакцию якоря.

В 1842-1843 гг. Ленц произвел классическое исследование "О законах выделения тепла гальваническим током" (доложено 2 декабря 1842 г., опубликовано в 1843 г.), начатое им задолго до аналогичных опытов Джоуля (сообщение Джоуля появилось в октябре 1841 г.) и продолженное им несмотря на публикацию Джоуля, "так как опыты последнего могут встретить некоторые обоснованные возражения, как это было уже показано нашим коллегой г-ном акад. Гессом" * . Ленц измеряет величину тока с помощью тангенс-буссоли - прибора, изобретенного гельсингфорским профессором Иоганном Нервандером (1805-1848), и в первой части своего сообщения исследует этот прибор. Во второй части "Выделение тепла в проволоках", доложенной 11 августа 1843 г., он приходит к своему знаменитому закону:

    "
  1. Нагревание проволоки гальваническим током пропорционально сопротивлению проволоки.
  2. Нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока" ** .

* (Э. X. Ленц, Избранные труды, Изд. АН СССР, 1950, стр. 361. )

** (Э. X. Ленц, Избранные труды, Изд. АН СССР, 1950, стр. 441. )

Закон Джоуля - Ленца сыграл важную роль в установлении закона сохранения энергии. Все развитие науки об электрических и магнитных явлениях подводило к идее единства сил природы, к идее сохранения этих "сил".

Почти одновременно с Фарадеем электромагнитную индукцию наблюдал американский физик Джозеф Генри (1797-1878). Генри изготовил большой электромагнит (1828), который, питаясь от гальванического элемента с малым сопротивлением, поддерживал груз в 2000 фунтов. Об этом электромагните упоминает Фарадей и указывает, что с его помощью можно при размыкании получить сильную искру.

Генри впервые (1832) наблюдал явление самоиндукции, и его приоритет отмечен наименованием единицы самоиндукции "генри".

В 1842 г. Генри установил колебательный характер разряда лейденской банки. Тонкая стеклянная игла, с помощью которой он исследовал это явление, намагничивалась с различной полярностью, тогда как направление разряда оставалось неизменным. "Разряд, какова бы ни была его природа,- заключает Генри,- не представляется (пользуясь теорией Франклина.- П. К.) единичным переносом невесомого флюида с одной обкладки на другую; обнаруженное явление заставляет нас допустить существование главного разряда в одном направлении, а затем несколько странных действий назад и вперед, каждое из которых является более слабым, чем предыдущее, продолжающееся до тех пор, пока не наступит равновесие".

Индукционные явления становятся ведущей темой в физических исследованиях. В 1845 г. немецкий физик Франц Нейман (1798-1895) дал математическое выражение закона индукции , обобщив исследования Фарадея и Ленца.

Электродвижущая сила индукции выражалась у Неймана в виде производной по времени от некоторой функции, индуцирующей ток, и взаимной конфигурации взаимодействующих токов. Эту функцию Нейман назвал электродинамическим потенциалом. Он нашел также выражение для коэффициента взаимной индукции. В своем сочинении "О сохранении силы" в 1847 г. Гельмгольц выводит неймановское выражение для закона электромагнитной индукции из энергетических соображений. В этом же сочинении Гельмгольц утверждает, что разряд конденсатора представляет собой "не... простое движение электричества в одном направлении, но... течение его то в одну, то в другую сторону между двух обкладок в виде колебаний, которые делаются все меньше и меньше, пока, наконец, вся живая сила не будет уничтожена суммою сопротивлений".

В 1853 г. Уильям Томсон (1824-1907) дал математическую теорию колебательного разряда конденсатора и установил зависимость периода колебаний от параметров колебательного контура (формула Томсона).

В 1858 г. П. Блазерна (1836-1918) снял экспериментально резонансную кривую электрических колебаний, изучая действие индуцирующего разрядкой контура, содержащего батарею конденсаторов и замыкающий проводники на побочный контур, с переменной длиной индуцируемого проводника. В том же 1858 г. Вильгельм Феддерсен (1832-1918) наблюдал искровой разряд лейденской банки во вращающемся зеркале, а в 1862 г. он сфотографировал изображение искрового разряда во вращающемся зеркале. Тем самым колебательный характер разряда был установлен с полной очевидностью. Вместе с тем экспериментально была проверена формула Томсона. Так шаг за шагом создавалось учение об электрических колебаниях , составляющее научный фундамент электротехники переменных токов и радиотехники.

Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока , проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года . Он обнаружил, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы не зависит от того, что является причиной изменения потока - изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток , вызванный этой ЭДС, называется индукционным током.

Энциклопедичный YouTube

  • 1 / 5

    Согласно закону электромагнитной индукции Фарадея (в СИ):

    E = − d Φ B d t {\displaystyle {\mathcal {E}}=-{{d\Phi _{B}} \over dt}} - электродвижущая сила , действующая вдоль произвольно выбранного контура, = ∬ S B → ⋅ d S → , {\displaystyle =\iint \limits _{S}{\vec {B}}\cdot d{\vec {S}},} - магнитный поток через поверхность, ограниченную этим контуром.

    Знак «минус» в формуле отражает правило Ленца , названное так по имени русского физика Э. Х. Ленца :

    Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

    Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

    E = − N d Φ B d t = − d Ψ d t {\displaystyle {\mathcal {E}}=-N{{d\Phi _{B}} \over dt}=-{{d\Psi } \over dt}} E {\displaystyle {\mathcal {E}}} - электродвижущая сила, N {\displaystyle N} - число витков, Φ B {\displaystyle \Phi _{B}} - магнитный поток через один виток, Ψ {\displaystyle \Psi } - потокосцепление катушки.

    Векторная форма

    В дифференциальной форме закон Фарадея можно записать в следующем виде:

    rot E → = − ∂ B → ∂ t {\displaystyle \operatorname {rot} \,{\vec {E}}=-{\partial {\vec {B}} \over \partial t}} (в системе СИ) rot E → = − 1 c ∂ B → ∂ t {\displaystyle \operatorname {rot} \,{\vec {E}}=-{1 \over c}{\partial {\vec {B}} \over \partial t}} (в системе СГС).

    В интегральной форме (эквивалентной):

    ∮ ∂ S ⁡ E → ⋅ d l → = − ∂ ∂ t ∫ S B → ⋅ d s → {\displaystyle \oint _{\partial S}{\vec {E}}\cdot {\vec {dl}}=-{\partial \over \partial t}\int _{S}{\vec {B}}\cdot {\vec {ds}}} (СИ) ∮ ∂ S ⁡ E → ⋅ d l → = − 1 c ∂ ∂ t ∫ S B → ⋅ d s → {\displaystyle \oint _{\partial S}{\vec {E}}\cdot {\vec {dl}}=-{1 \over c}{\partial \over \partial t}\int _{S}{\vec {B}}\cdot {\vec {ds}}} (СГС)

    Здесь E → {\displaystyle {\vec {E}}} - напряжённость электрического поля , B → {\displaystyle {\vec {B}}} - магнитная индукция , S {\displaystyle S\ } - произвольная поверхность, - её граница. Контур интегрирования ∂ S {\displaystyle \partial S} подразумевается фиксированным (неподвижным).

    Следует отметить, что закон Фарадея в такой форме, очевидно, описывает лишь ту часть ЭДС, что возникает при изменении магнитного потока через контур за счёт изменения со временем самого поля без изменения (движения) границ контура (об учете последнего см. ниже).

    Если же, скажем, магнитное поле постоянно, а магнитный поток изменяется вследствие движения границ контура (например, при увеличении его площади), то возникающая ЭДС порождается силами, удерживающими заряды на контуре (в проводнике) и силой Лоренца , порождаемой прямым действием магнитного поля на движущиеся (с контуром) заряды. При этом равенство E = − d Φ / d t {\displaystyle {\mathcal {E}}=-{{d\Phi }/dt}} продолжает соблюдаться, но ЭДС в левой части теперь не сводится к ∮ ⁡ E → ⋅ d l → {\displaystyle \oint {\vec {E}}\cdot {\vec {dl}}} (которое в данном частном примере вообще равно нулю). В общем случае (когда и магнитное поле меняется со временем, и контур движется или меняет форму) последняя формула верна так же, но ЭДС в левой части в таком случае есть сумма обоих слагаемых, упомянутых выше (то есть порождается частично вихревым электрическим полем, а частично силой Лоренца и силой реакции движущегося проводника).

    Потенциальная форма

    При выражении магнитного поля через векторный потенциал закон Фарадея принимает вид:

    E → = − ∂ A → ∂ t {\displaystyle {\vec {E}}=-{\partial {\vec {A}} \over \partial t}} (в случае отсутствия безвихревого поля, то есть тогда, когда электрическое поле порождается полностью только изменением магнитного, то есть электромагнитной индукцией).

    В общем случае, при учёте и безвихревого (например, электростатического) поля имеем:

    E → = − ∇ φ − ∂ A → ∂ t {\displaystyle {\vec {E}}=-\nabla \varphi -{\partial {\vec {A}} \over \partial t}}

    Подробнее

    Поскольку вектор магнитной индукции по определению выражается через векторный потенциал так:

    B → = r o t A → ≡ ∇ × A → , {\displaystyle {\vec {B}}=rot\ {\vec {A}}\equiv \nabla \times {\vec {A}},}

    то можно подставить это выражение в

    r o t E → ≡ ∇ × E → = − ∂ B → ∂ t , {\displaystyle rot\ {\vec {E}}\equiv \nabla \times {\vec {E}}=-{\frac {\partial {\vec {B}}}{\partial t}},} ∇ × E → = − ∂ (∇ × A →) ∂ t , {\displaystyle \nabla \times {\vec {E}}=-{\frac {\partial (\nabla \times {\vec {A}})}{\partial t}},}

    и, поменяв местами дифференцирование по времени и пространственным координатам (ротор):

    ∇ × E → = − ∇ × ∂ A → ∂ t . {\displaystyle \nabla \times {\vec {E}}=-\nabla \times {\frac {\partial {\vec {A}}}{\partial t}}.}

    Отсюда, поскольку ∇ × E → {\displaystyle \nabla \times {\vec {E}}} полностью определяется правой частью последнего уравнения, видно, что вихревая часть электрического поля (та часть, которая имеет ротор, в отличие от безвихревого поля ∇ φ {\displaystyle \nabla \varphi } ) - полностью определяется выражением

    − ∂ A → ∂ t . {\displaystyle -{\frac {\partial {\vec {A}}}{\partial t}}.}

    Т.е. в случае отсутствия безвихревой части можно записать

    E → = − ∂ A → ∂ t , {\displaystyle {\vec {E}}=-{\frac {\partial {\vec {A}}}{\partial t}},}

    а в общем случае

    E → = − ∇ φ − d A → d t . {\displaystyle {\vec {E}}=-\nabla \varphi -{\frac {d{\vec {A}}}{dt}}.} 1831 года наступил триумф: он открыл явление электромагнитной индукции. Установка, на которой Фарадей сделал своё открытие, заключалась в том, что Фарадей изготовил кольцо из мягкого железа примерно 2 см шириной и 20 см диаметром и намотал много витков медной проволоки на каждой половине кольца. Цепь одной обмотки замыкала проволока, в её витках находилась магнитная стрелка, удаленная настолько, чтобы не сказывалось действие магнетизма, созданного в кольце. Через вторую обмотку пропускался ток от батареи гальванических элементов . При включении тока магнитная стрелка совершала несколько колебаний и успокаивалась; когда ток прерывали, стрелка снова колебалась. Выяснилось, что стрелка отклонялась в одну сторону при включении тока и в другую, когда ток прерывался. М. Фарадей установил, что «превращать магнетизм в электричество» можно и с помощью обыкновенного магнита.

    В это же время американский физик Джозеф Генри также успешно проводил опыты по индукции токов, но пока он собирался опубликовать результаты своих опытов, в печати появилось сообщение М. Фарадея об открытии им электромагнитной индукции.

    М. Фарадей стремился использовать открытое им явление, чтобы получить новый источник электричества.

    В учебнике физики для IX класса дан краткий экскурс в историю открытия рассматриваемого закона. Обзор целесообразно дополнить. Речь идет о фундаментальном законе природы, и нужно раскрыть все его стороны в процессе становления. Рассказ о процессе поисков закона Фарадеем особенно поучителен, и здесь не нужно- жалеть времени.
    Майкл Фарадей родился в 1791 г. в окрестностях Лондона в семье кузнеца. Отец не имел средств для платы за учебу, и Фарадей в 13 лет был вынужден начать изучение переплетного дела. К счастью, он попал в ученики к владельцу книжного магазина. Любознательный мальчик жадно читал, причем нелегкую литературу. Его привлекали статьи по естественным наукам в Британской энциклопедии, он штудировал «Беседы о химии» Марсе. В 1811 г. Фарадей начал посещать общедоступные лекции по физике известного лондонского педагога Тэтума.
    Поворотным в жизни Фарадея был 1812 г. Клиент владельца книжного магазина, член Королевского института Дэнс рекомендовал юноше прослушать лекции знаменитого химика Гэмфрн Дэви . Фарадей последовал доброму совету; он жадно слушал и тщательно конспектировал. По совету того же Дэнса он обработал записи и послал их Дэви, присоединив просьбу о предоставлении возможности исследовательской работы. В 1813 г. Фарадей получил место лаборанта в химической лаборатории Королевского института, которой руководил Дэви.
    Вначале Фарадей - химик. Он быстро становится на путь самостоятельного творчества, и самолюбию Дэви приходится часто страдать от успехов ученика. В 1820 г. Фарадей узнает об открытии Эрстеда, и с этих пор его мысли поглощают электричество и магнетизм. Он начинает свои знаменитые экспериментальные исследования, приведшие к преобразованию физического мышления. В 1823 г. Фарадей был избран членом Лондонского Королевского общества, а затем назначен директором физической и химической лабораторий Королевского института. В стенах этих лабораторий были совершены величайшие открытия. Жизнь Фарадея, внешне монотонная, поразительна по творческому напряжению. О нем свидетельствует трехтомный: труд «Экспериментальные исследования по электричеству», в котором отражен шаг за шагом творческий путь гения.
    В 1820 г. Фарадей ставит принципиально новую проблему: «превратить магнетизм в электричество». Это было вскоре после открытия магнитного действия токов. В опыте Эрстеда электрический ток действует, на магнит. Поскольку, согласно Фарадею, все силы природы взаимопревращаемы, можно, наоборот, магнитной силой возбудить электрический ток.
    Фарадей ожижает газы, производит тонкие химические анализы, открывает новые химические свойства веществ. Но мысль его неотступно занята поставленной проблемой. В 1822 г. он описывает попытку обнаружить «состояние», обусловленное течением тока: «поляризовать луч света от лампы путем отражения и попытаться обнаружить, не окажет ли деполяризующее действие вода, расположенная между полюсами, вольтовой батареи в стеклянном сосуде...» Фарадей надеялся таким образом получить какую-нибудь информацию о свойствах тока. Но опыт не дал ничего. Далее следует 1825 год. Фарадей публикует статью «Электромагнитный ток (под влиянием магнита)», в которой высказывает следующую мысль. Если ток действует на магнит, то он должен испытывать, противодействие. «По разным соображениям, - пишет Фарадей,- было сделано предположение, что приближение полюса сильного магнита будет уменьшать электрическийток». И он описывает опыт, реализующий эту идею.
    В дневнике от 28 ноябряря 1825 г. описан аналогичный опыт. Батарея гальванических элементов соединялась проводом. Параллельно этому проводу располагался другой (провода разделялись двойным слоем бумаги), концы которого присоединялись к гальванометру. Фарадей рассуждал, по-видимому, так. Если ток есть движение электрической жидкости и это движение действует на постоянный магнит - совокупность токов (по гипотезе Ампера), то движущаяся жидкость в одном проводнике должна заставить двигаться неподвижную - в другом, и гальванометр должен зафиксировать ток. «Разные соображения», о которых писал Фарадей при изложении первого опыта, сводились к тому же, только там ожидалась реакция движущегося в проводнике электрического флюида со стороны молекулярных токов постоянного магнита. Но опыты дали отрицательный результат.
    Решение пришло в 1831 г., когда Фарадей предположил, что индукция должна возникнуть при и нестационарном процессе. Это была ключевая мысль, приведшая к открытию явления электромагнитной индукции.
    Возможно, что к идее изменения тока заставило обратиться сообщение, полученное из Америки. Известие пришло от американского физика Джозефа Генри (1797 - 1878).
    В юные годы Генри не проявлял ни исключительных способностей, ни интереса к науке. Вырос он в нищете, был батраком на ферме, актером. Так же, как и Фарадей, он занимайся самообразованием. Учиться начал с 16 лет в академии города Олбани. За семь месяцев он усвоил столько знаний, что получил место учителя в сельской школе. Затем Генри работал у профессора химии Бека в качестве лекционного ассистента. Работу он совмещал с учебой в академии. После окончания курса Генри был назначен инженером и инспектором на канале Эри. Через несколько месяцев он оставил эту выгодную должность, приняв приглашение на должность профессора математики и физики в Олбани. В это время английский изобретатель Вильям Стерджен (1783 - 1850) сообщил о своем изобретении подковообразного магнита, способного поднять стальное тело весом до четырех килограммов.
    Генри увлекся электромагнетизмом. Он сразу же нашел способ увеличить подъемную силу до тонны. Достичь этого удалось новым в то время приемом: вместо изоляции тела магнита изолировался провод. Открылся способ создания многослойных обмоток. Еще в 1831 г. Генри показал возможность построения электродвигателя, изобрел электромагнитное реле, и с его помощью демонстрировал передачу электрических сигналов на расстояние, предвосхитив изобретение Морзе (телеграф Морзе появился в 1837 г.).
    Подобно Фарадею Генри поставил перед собой задачу получить электрический ток с помощью магнита. Но это была постановка задачи изобретателя. И поиски направлялись голой интуицией. Открытие произошло за несколько лет до опытов Фарадея. Постановка ключевого опыта Генри изображена на рисунке 9. Здесь все так же, как показывается до сих пор. Только гальваническому элементу мы предпочитаем более удобный аккумулятор, а вместо крутильных весов пользуемся гальванометром.
    Но Генри не сообщил об этом опыте никому. «Мне следовало напечатать это раньше,- говорил он сокрушенно своим друзьям,- Но у меня было так мало времени! Хотелось свести полученные результаты в какую-то систему» (курсив мой.- В. Д.). И отсутствие регулярного образования и еще более - утилитарно- изобретательский дух американской науки сыграли плохую роль. Генри, конечно, не понял и не почувствовал глубины и важности нового открытия. В противном случае он, конечно, оповестил бы ученый мир о величайшем факте. Умолчав об индукционных опытах, Генри сразу же послал сообщение, когда ему удалось поднять электромагнитом целую тонну.
    Именно это сообщение и получил Фарадей. Возможно, оно послужило последним звеном в цепи умозаключений, приведших к ключевой идее. В опыте 1825 г. два провода отделялись бумагой. Индукция должна была быть, но не обнаруживалась вследствие слабости эффекта. Генри показал, что в электромагните эффект резко усиливается при применении многослойной обмотки. Следовательно, индукция должна возрасти, если индуктивное действие будет передаваться по большой длине. В самом деле, магнит - собрание токов. Возбуждение намагничивания в стальном стержне при пропускании тока по обмотке есть индукция тока током. Она усиливается, если путь тока по обмотке становится длиннее.
    Такова возможная цепь логических умозаключений Фарадея. Вот полное описание первого успешного опыта: «Двести три фута медной проволоки в одном куске были намотаны на большой деревянный барабан; другие двести три фута такой же проволоки были проложены в виде спирали между витками первой обмотки, причем металлический контакт был везде устранен посредством шнурка. Одна из этих спиралей была соединена с гальванометром, а другая - с хорошо заряженной батареей из ста пар пластин в четыре квадратных дюйма с двойными медными пластинками. При замыкании контакта наблюдалось внезапное, но очень слабое действие на гальванометр, и подобное же слабое действие имело место при размыкании контакта с батареей».
    Таков был первый опыт, давший положительный результат после десятилетних поисков. Фарадей устанавливает, что при замыкании и размыкании возникают индукционные токи противоположных направлений. Далее он переходит к изучению влияния железа на индукцию.
    «Из круглого брускового, мягкого железа было сварено кольцо; толщина металла была равна семи-восьми дюймам, а наружный диаметр кольца - шести дюймам. На одну часть этого кольца было намотано три спирали, каждая из которых содержала около двадцати четырех футов медной проволоки толщиной в одну двадцатую дюйма. Спирали были изолированы от железа и друг от друга и наложены одна на другую... Ими можно было пользоваться по отдельности и в соединении; эта группа обозначена буквой А (рис. 10). На другую часть кольца было намотано таким же способом около шестидесяти футов такой же медной проволоки в двух кусках, образовавших спираль В, которая имела одинаковое направление со спиралями А, но была отделена от них на каждом конце на протяжении примерно полудюйма голым железом.
    Спираль В соединялась медными проводами с гальванометром, помещенным на расстоянии трех футов от кольца. Отдельные спирали А соединялись конец с концом так, что образовали общую спираль, концы которой были соединены с батареей из десяти пар пластин в четыре квадратных дюйма. Гальванометр реагировал немедленно, притом значительно сильнее, чем это наблюдалось выше, при пользовании в десять раз более мощной спиралью без железа».
    Наконец, Фарадей производит опыт, с которого до сих пор обычно начинают изложение вопроса об электромагнитной индукции. Это было точное повторение опыта Генри, изображенного на рисунке 9.
    Задача, поставленная Фарадеем в 1820 г., была решена: магнетизм был превращен в электричество.
    Вначале Фарадей различает индукцию тока от тока (ее он называет «вольта-электрическая индукция» и тока от магнита («магнито-электрическая индукция»). Но затем он показывает, что все случаи подчиняются одной общей закономерности.
    Закон электромагнитной индукции охватил и другую группу явлений, которая получила впоследствии название явлений самоиндукции. Фарадей назвал новое явление так: «Индуктивное влияние электрического тока на самого себя».
    Вопрос этот возник в связи со следующим фактом, сообщенным Фарадею в 1834 г. Дженкиным. Факт этот заключался в следующем. Две пластины гальванической батареи соединяются проволокой небольшой длины. При этом никакими ухищрениями экспериментатору не удается получить от этой проволоки электрического удара. Но если взять вместо проволоки обмотку электромагнита, то всякий раз при размыкании цепи ощущается удар. Фарадей писал: «Одновременно наблюдается другое, давно известное ученым явление, а именно: в месте разъединения проскакивает яркая электрическая искра» (курсив мой - В. Д.).
    Фарадей начал обследование этих фактов и вскоре открыл ряд новых сторон явления. Ему понадобилось немного времени, Чтобы установить «тождественность явлений с явлениями индукции». Опыты, которые до сих пор демонстрируются и в.средней, и в высшей школе при объяснении явления самоиндукции, были поставлены Фарадеем в 1834 г.
    Независимо аналогичные опыты были поставлены Дж. Генри, однако, как и опыты по индукции, они своевременно не были опубликованы. Причина та же: Генри не нашел физической концепции, охватывающей разнообразные по форме явления.
    Для Фарадея самоиндукция была фактом, осветившим дальнейший путь поисков. Обобщая наблюдения, он приходит к заключениям большого принципиального значения. «Не подлежит сомнению, что ток в одной части провода может действовать путем индукции на другие части того же самого провода, находящиеся рядом... Именно это и создает впечатление, что ток действует на самого себя».
    Не зная природы тока, Фарадей тем не менее точно указывает на суть дела: «Когда ток действует путем индукции нарядом с ним расположенное проводящее вещество, то, вероятно, он действует на имеющееся в этом проводящем веществе электричество,- все равно, находится ли последнее в состоянии тока или же оно неподвижно; в первом случае он усиливает или ослабляет ток, смотря по его направлению во втором - создает ток».
    Математическое выражение закона электромагнитной индукций дал в 1873 г. Максвелл в «Трактате по электричеству и магнетизму». Только после этого он стал основой количественных расчетов. Так что закон электромагнитной индукции следует называть законом Фарадея-Максвелла.
    Методические замечания . Известно, что возбуждение индукционного тока в проводнике, движущемся в постоянном магнитном поле, и в неподвижном проводнике, который находится в переменном магнитном поле, подчиняется одному и тому же закону . Для Фарадея и Максвелла это было очевидно, поскольку они представляли себе линии магнитной индукции как реальные образования в эфире. При включении и выключении тока или изменениях силы тока вокруг проводников, составляющих цепь, линии магнитной индукции перемещаются. При этом они пересекают саму цепь, обусловливая явление самоиндукции. Если около цепи с изменяющимся током находится какой-либо проводник, то линии магнитной индукции, пересекая его, возбуждают ЭДС электромагнитной индукции.
    Материализация силовых линий электрического поля и линий магнитной индукции стали достоянием истории. Однако было бы ошибочно придавать силовым линиям лишь формальный характер. Современная физика считает, что силовая линия электрического поля и линия магнитной индукции- это геометрическое место точек, в которых данное поле имеет состояние, отличное от состояния в других точках. Это состояние определяется значениями векторов и в этих точках. При изменениях поля векторы и изменяются, соответственно изменяется, конфигурация силовых линий. Состояние поля может перемещаться в пространстве со скоростью света. Если проводник находится в поле, состояние которого изменяется, в проводнике возбуждается ЭДС.

    Случай, когда поле постоянно, а проводник перемещается в этом поле, не описывается теорией Максвелла. Впервые на это обратил внимание Эйнштейн. Его основополагающая, работа «К электродинамике движущихся тел» как раз и начинается с обсуждения недостаточности теории Максвелла в этом пункте. Явление возбуждения ЭДС в проводнике, движущемся е постоянном магнитном поле, может быть включено в рамки теории электромагнитного поля, если ее дополнить принципом относительности и принципом постоянства скорости света.

    Сегодня мы расскажем о явлении электромагнитной индукции. Раскроем, почему этот феномен был открыт и какую пользу принес.

    Шелк

    Люди всегда стремились жить лучше. Кто-то может подумать, что это повод обвинить человечество в алчности. Но часто речь идет об обретении элементарного бытового удобства.

    В средневековой Европе умели делать ткани шерстяные, хлопковые и льняные. А еще в то время люди страдали от избытка блох и вшей. При этом в китайской цивилизации уже научились виртуозно ткать шелк. Одежда из него не подпускала кровососов к коже человека. Лапки насекомых скользили по гладкой ткани, и вши сваливались. Поэтому европейцы захотели во что бы то ни стало одеваться в шелк. А торговцы подумали, что это еще одна возможность разбогатеть. Поэтому был проложен Великий шелковый путь.

    Только так желанную ткань доставляли страждущей Европе. И настолько много людей вовлекались в процесс, что в результате возникали города, империи спорили за право взимать налоги, а некоторые отрезки пути до сих пор наиболее удобный способ добраться до нужного места.

    Компас и звезда

    На пути караванов с шелком вставали горы и пустыни. Бывало, что характер местности оставался прежним недели и месяцы. Степные дюны сменялись такими же холмами, один перевал следовал за другим. И людям надо было как-то ориентироваться, чтобы доставить свой ценный груз.

    Первыми на выручку пришли звезды. Зная, какой сегодня день, и каких созвездий ожидать, опытный путешественник всегда мог определить, где юг, где восток, и куда идти. Но людей с достаточным объемом знаний всегда не хватало. Да и время точно отсчитывать тогда не умели. Закат солнца, восход - вот и все ориентиры. А снежная или песчаная буря, пасмурная погода исключали даже возможность видеть полярную звезду.

    Потом люди (вероятно, древние китайцы, но ученые еще спорят на этот счет) поняли, что один минерал всегда определенным образом расположен по отношению к сторонам света. Это свойство использовалось, чтобы создать первый компас. До открытия явления электромагнитной индукции было далеко, но начало было положено.

    От компаса к магниту

    Само название «магнит» восходит к топониму. Вероятно, первые компасы делались из руды, добываемой в холмах Магнезии. Эта область располагается в Малой Азии. И выглядели магниты как черные камни.

    Первые компасы были весьма примитивными. В чашу или другую емкость наливалась вода, сверху клался тонкий диск из плавучего материала. А в центр диска помещалась намагниченная стрелка. Один ее конец всегда указывал на север, другой - на юг.

    Трудно даже представить себе, что караван сохранял воду для компаса, пока от жажды умирали люди. Но не потерять направление и позволить людям, животным и товару добраться до безопасного места было важнее нескольких отдельных жизней.

    Компасы проделывали множество путешествий и встречались с различными феноменами природы. Неудивительно, что явление электромагнитной индукции было открыто в Европе, хотя магнитная руда первоначально добывалась в Азии. Вот таким замысловатым образом желание европейских жителей спать удобнее привело к важнейшему открытию физики.

    Магнитное или электрическое?

    В начале девятнадцатого века ученые поняли, как получать постоянный ток. Была создана первая примитивная батарейка. Ее хватало для того, чтобы пустить по металлическим проводникам поток электронов. Благодаря первому источнику электричества был совершен ряд открытий.

    В 1820 году датский ученый Ханс Кристиан Эрстед выяснил: магнитная стрелка отклоняется рядом со включенным в сеть проводником. Положительный полюс компаса всегда расположен определенным образом по отношению к направлению тока. Ученый производил опыт во всех возможных геометриях: проводник был над или под стрелкой, они располагались параллельно или перпендикулярно. В результате всегда получалось одно и то же: включенный ток приводил в движение магнит. Так было предвосхищено открытие явления электромагнитной индукции.

    Но мысль ученых должна подтверждаться экспериментом. Сразу после опыта Эрстеда английский физик Майкл Фарадей задался вопросом: «Магнитное и электрическое поле просто влияют друг на друга, или они связаны теснее?» Первым ученый проверил предположение, что если электрическое поле заставляет отклоняться намагниченный предмет, то магнит должен порождать ток.

    Схема опыта проста. Сейчас ее может повторить любой школьник. Тонкая металлическая проволока была свернута в форме пружины. Ее концы подключались к прибору, регистрирующему ток. Когда рядом с катушкой двигался магнит - стрелка устройства показывала напряжение электрического поля. Таким образом был выведен закон электромагнитной индукции Фарадея.

    Продолжение опытов

    Но это еще не все, что сделал ученый. Раз магнитное и электрическое поле связаны тесно, требовалось выяснить, насколько.

    Для этого Фарадей к одной обмотке подвел ток и вдвинул ее внутрь другой такой же обмотки радиусом больше первой. И снова было индуцировано электричество. Таким образом, ученый доказал: движущийся заряд порождает и электрическое, и магнитное поля одновременно.

    Стоит подчеркнуть, что речь идет о движении магнита или магнитного поля внутри замкнутого контура пружины. То есть поток должен все время меняться. Если этого не происходит, ток не генерируется.

    Формула

    Закон Фарадея для электромагнитной индукции выражается формулой

    Расшифруем символы.

    ε обозначает ЭДС или электродвижущую силу. Эта величина скалярная (то есть не векторная), и она показывает работу, которую прикладывают некие силы или законы природы, чтобы создать ток. Надо отметить, что работу должны совершать непременно неэлектрические явления.

    Φ - это магнитный поток сквозь замкнутый контур. Данная величина является произведением двух других: модуля вектора магнитной индукции В и площади замкнутого контура. Если магнитное поле действует на контур не строго перпендикулярно, то к произведению добавляется косинус угла между вектором В и нормалью к поверхности.

    Последствия открытия

    За этим законом последовали другие. Последующие ученые устанавливали зависимости напряженности электрического тока от мощности, сопротивления от материала проводника. Изучались новые свойства, создавались невероятные сплавы. Наконец, человечество расшифровало структуру атома, вникло в тайну рождения и смерти звезд, вскрыло геном живых существ.

    И все эти свершения требовали огромного количества ресурсов, а, прежде всего, электричества. Любое производство или большое научное исследование проводились там, где были доступны три составляющие: квалифицированные кадры, непосредственно материал, с которым надо работать и дешевая электроэнергия.

    А это было возможно там, где силы природы могли придавать большой момент вращения ротору: реки с большим перепадом высот, долины с сильными ветрами, разломы с избытком геомагнитной энергии.

    Интересно, что современный способ получать электричество не отличается принципиально от опытов Фарадея. Магнитный ротор очень быстро вращается внутри большой катушки проволоки. Магнитное поле в обмотке все время меняется и генерируется электрический ток.

    Конечно, подобраны и наилучший материал для магнита и проводников, и технология всего процесса совсем другая. Но суть в одном: используется принцип, открытый на простейшей системе.

    После открытий Эрстеда и Ампера стало ясно, что электричество обладает магнитной силой. Теперь необходимо было подтвердить влияние магнитных явлений на электрические. Эту задачу блистательно решил Фарадей.

    Майкл Фарадей (1791-1867) родился в Лондоне, в одной из беднейших его частей. Его отец был кузнецом, а мать - дочерью земледельца-арендатора. Когда Фарадей достиг школьного возраста, его отдали в начальную школу. Курс, пройденный Фарадеем здесь, был очень узок и ограничивался только обучением чтению, письму и началам счета.

    В нескольких шагах от дома, в котором жила семья Фарадеев, находилась книжная лавка, бывшая вместе с тем и переплетным заведением. Сюда-то и попал Фарадей, закончив курс начальной школы, когда возник вопрос о выборе профессии для него. Майклу в это время минуло только 13 лет. Уже в юношеском возрасте, когда Фарадей только что начинал свое самообразование, он стремился опираться исключительно только на факты и проверять сообщения других собственными опытами.

    Эти стремления доминировали в нем всю жизнь как основные черты его научной деятельности Физические и химические опыты Фарадей стал проделывать еще мальчиком при первом же знакомстве с физикой и химией. Однажды Майкл посетил одну из лекций Гэмфри Дэви, великого английского физика.

    Фарадей сделал подробную запись лекции, переплел ее и отослал Дэви. Тот был настолько поражен, что предложил Фарадею работать с ним в качестве секретаря. Вскоре Дэви отправился в путешествие по Европе и взял с собой Фарадея. За два года они посетили крупнейшие европейские университеты.

    Вернувшись в Лондон в 1815 году, Фарадей начал работать ассистентом в одной из лабораторий Королевского института в Лондоне. В то время это была одна из лучших физических лабораторий мира С 1816 по 1818 год Фарадей напечатал ряд мелких заметок и небольших мемуаров по химии. К 1818 году относится первая работа Фарадея по физике.

    Опираясь на опыты своих предшественников и скомбинировав несколько собственных опытов, к сентябрю 1821 года Майкл напечатал «Историю успехов электромагнетизма». Уже в это время он составил вполне правильное понятие о сущности явления отклонения магнитной стрелки под действием тока.

    Добившись этого успеха, Фарадей на целых десять лет оставляет занятия в области электричества, посвятив себя исследованию целого ряда предметов иного рода. В 1823 году Фарадеем было произведено одно из важнейших открытий в области физики - он впервые добился сжижения газа, и вместе с тем установил простой, но действительный метод обращения газов в жидкость. В 1824 году Фарадей сделал несколько открытий в области физики.

    Среди прочего он установил тот факт, что свет влияет на цвет стекла, изменяя его. В следующем году Фарадей снова обращается от физики к химии, и результатом его работ в этой области является открытие бензина и серно-нафталиновой кислоты.

    В 1831 году Фарадей опубликовал трактат «Об особого рода оптическом обмане», послуживший основанием прекрасного и любопытного оптического снаряда, именуемого «хромотропом». В том же году вышел еще один трактат ученого «О вибрирующих пластинках». Многие из этих работ могли сами- по себе обессмертить имя их автора. Но наиболее важными из научных работ Фарадея являются его исследования в области электромагнетизма и электрической индукции.

    Строго говоря, важный отдел физики, трактующий явления электромагнетизма и индукционного электричества, и имеющий в настоящее время такое громадное значение для техники, был создан Фарадеем из ничего.

    К тому времени, когда Фарадей окончательно посвятил себя исследованиям в области электричества, было установлено, что при обыкновенных условиях достаточно присутствия наэлектризованного тела, чтобы влияние его возбудило электричество во всяком другом теле. Вместе с тем было известно, что проволока, по которой проходит ток и которая также представляет собою наэлектризованное тело, не оказывает никакого влияния на помещенные рядом другие проволоки.

    Отчего зависело это исключение? Вот вопрос, который заинтересовал Фарадея и решение которого привело его к важнейшим открытиям в области индукционного электричества. По своему обыкновению Фарадей начал ряд опытов, долженствовавших выяснить суть дела.

    На одну и ту же деревянную скалку Фарадей намотал параллельно друг другу две изолированные проволоки. Концы одной проволоки он соединил с батареей из десяти элементов, а концы другой - с чувствительным гальванометром. Когда был пропущен ток через первую проволоку,

    Фарадей обратил все свое внимание на гальванометр, ожидая заметить по колебаниям его появление тока и во второй проволоке. Однако ничего подобного не было: гальванометр оставался спокойным. Фарадей решил увеличить силу тока и ввел в цепь 120 гальванических элементов. Результат получился тот же. Фарадей повторил этот опыт десятки раз и все с тем же успехом.

    Всякий другой на его месте оставил бы опыты, убежденный, что ток, проходящий через проволоку, не оказывает никакого действия на соседнюю проволоку. Но фарадей старался всегда извлечь из своих опытов и наблюдений все, что они могут дать, и потому, не получив прямого действия на проволоку, соединенную с гальванометром, стал искать побочные явления.

    Сразу же он заметил, что гальванометр, оставаясь совершенно спокойным во все время прохождения тока, приходит в колебание при самом замыкании цепи и при размыкании ее Оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение.

    Эти вторичные мгновенные токи, вызываемые влиянием первичных, названы были Фарадеем индуктивными, и это название сохранилось за ними доселе. Будучи мгновенными, моментально исчезая вслед за своим появлением, индуктивные токи не имели бы никакого практического значения, если бы Фарадей не нашел способ при помощи остроумного приспособления (коммутатора) беспрестанно прерывать и снова проводить первичный ток, идущий от батареи по первой проволоке, благодаря чему во второй проволоке беспрерывно возбуждаются все новые и новые индуктивные токи, становящиеся, таким образом, постоянными. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), - индукция, и новый вид этой энергии - индукционное электричество.

    Продолжая свои опыты, Фарадей открыл далее, что достаточно простого приближения проволоки, закрученной в замкнутую кривую, к другой, по которой идет гальванический ток, чтобы в нейтральной проволоке возбудить индуктивный ток направления, обратного гальваническому току, что удаление нейтральной проволоки снова возбуждает в ней индуктивный ток уже одинакового направления с гальваническим, идущим по неподвижной проволоке, и что, наконец, эти индуктивные токи возбуждаются только во время приближения и удаления проволоки к проводнику гальванического тока, а без этого движения токи не возбуждаются, как бы близко друг к другу проволоки ни находились.

    Таким образом, было открыто новое явление, аналогичное вышеописанному явлению индукции при замыкании и прекращении гальванического тока. Эти открытия вызвали в свою очередь новые. Если можно вызвать индуктивный ток замыканием и прекращением гальванического тока, то не получится ли тот же результат от намагничивания и размагничивания железа?

    Работы Эрстеда и Ампера установили уже родство магнетизма и электричества. Было известно, что железо делается магнитом, когда вокруг него обмотана изолированная проволока и по последней проходит гальванический ток, и что магнитные свойства этого железа прекращаются, как только прекращается ток.

    Исходя из этого, Фарадей придумал такого рода опыт: вокруг железного кольца были обмотаны две изолированные проволоки; причем одна проволока была обмотана вокруг одной половины кольца, а другая - вокруг другой. Через одну проволоку пропускался ток от гальванической батареи, а концы другой были соединены с гальванометром. И вот, когда ток замыкался или прекращался и когда, следовательно, железное кольцо намагничивалось или размагничивалось, стрелка гальванометра быстро колебалась и затем быстро останавливалась, то есть в нейтральной проволоке возбуждались все те же мгновенные индуктивные токи - на этот раз: уже под влиянием магнетизма.

    Таким образом, здесь впервые магнетизмбыл превращен в электричество. Получив эти результаты, Фарадей решил разнообразить свои опыты. Вместо железного кольца он стал употреблять железную полосу. Вместо возбуждения в железе магнетизма гальваническим током он намагничивал железо прикосновением его к постоянному стальному магниту. Результат получался тот же: в проволоке, обматывавшей железо, всегда! возбуждался ток в момент намагничивания и размагничивания железа.

    Затем Фарадей вносил в проволочную спираль стальной магнит - приближение и удаление последнего вызывало в проволоке индукционные токи. Словом, магнетизм, в смысле возбуждения индукционных, токов, действовал совершенно так же, как и гальванический ток.

    В то время физиков усиленно занимало одно загадочное явление, открытое в 1824 году Араго и не находившее объяснения, несмотря на; то, что этого объяснения усиленно искали такие выдающиеся ученые того времени, как сам Араго, Ампер, Пуассон, Бабэдж и Гершель.

    Дело состояло в следующем. Магнитная стрелка, свободно висящая, быстро приходит в состояние покоя, если под нее подвести круг из немагнитного металла; если затем круг привести во вращательное движение, магнитная стрелка начинает двигаться за ним.

    В спокойном состоянии нельзя было открыть ни малейшего притяжения или отталкивания между кругом и стрелкой, между тем как тот же круг, находившийся в движении, тянул за собою не только легкую стрелку, но и тяжелый магнит. Это поистине чудесное явление казалось ученым того времени таинственной загадкой, чем-то выходящим за пределы естественного.

    Фарадей, исходя из своих вышеизложенных данных, сделал предположение, что кружок немагнитного металла, под влиянием магнита, во время вращения обегается индуктивными токами, которые оказывают воздействие на магнитную стрелку и влекут ее за магнитом.

    И действительно, введя край кружка между полюсами большого подковообразного магнита и соединив проволокою центр и край кружка с гальванометром, Фарадей получил при вращении кружка постоянный электрический ток.

    Вслед за тем Фарадей остановился на другом вызывавшем тогда общее любопытство явлении. Как известно, если посыпать на магнит железных опилок, они группируются по определенным линиям, называемым магнитными кривыми. Фарадей, обратив внимание на это явление, дал основы в 1831 году магнитным кривым название «линий магнитной силы», вошедшее затем во всеобщее употребление.

    Изучение этих «линий» привело Фарадея к новому открытию, оказалось, что для возбуждения индуктивных токов приближение и удаление источника от магнитного полюса необязательны. Для возбуждения токов достаточно пересечь известным образом линии магнитной силы.

    Дальнейшие работы Фарадея в упомянутом направлении приобретали, с современной ему точки зрения, характер чего-то совершенно чудесного. В начале 1832 года он демонстрировал прибор, в котором возбуждались индуктивные токи без помощи магнита или гальванического тока.

    Прибор состоял из железной полосы, помещенной в проволочной катушке. Прибор этот при обыкновенных условиях не давал ни малейшего признака появления в нем токов; но лишь только ему давалось направление, соответствующее направлению магнитной стрелки, в проволоке возбуждался ток.

    Затем Фарадей давал положение магнитной стрелки одной катушке и потом вводил в нее железную полосу: ток снова возбуждался. Причиною, вызывавшею в этих случаях ток, был земной магнетизм, вызывавший индуктивные токи подобно обыкновенному магниту или гальваническому току. Чтобы нагляднее показать и доказать это, Фарадей предпринял еще один опыт, вполне подтвердивший его соображения.

    Он рассуждал, что если круг из немагнитного металла, например, из меди, вращаясь в положении, при котором он пересекает линии магнитной силы соседнего магнита, дает индуктивный ток, то тот же круг, вращаясь в отсутствие магнита, но в положении, при котором круг будет пересекать линии земного магнетизма, тоже должен дать индуктивный ток.

    И действительно, медный круг, вращаемый в горизонтальной плоскости, дал индуктивный ток, производивший заметное отклонение стрелки гальванометра. Ряд исследований в области электрической индукции Фарадей закончил открытием, сделанным в 1835 году, «индуктирующего влияния тока на самого себя».

    Он выяснил, что при замыкании или размыкании гальванического тока в самой проволоке, служащей проводником для этого тока, возбуждаются моментальные индуктивные токи.

    Русский физик Эмиль Христофорович Ленц (1804-1861) дал правило для определения направления индукционного тока. «Индукционный ток всегда направлен так, что создаваемое им магнитное поле затрудняет или тормозит вызывающее индукцию движение, - отмечает А.А. Коробко-Стефанов в своей статье об электромагнитной индукции. - Например, при приближении катушки к магниту возникающий индукционный ток имеет такое направление, что созданное им магнитное поле будет противоположно магнитному полю магнита. В результате между катушкой и магнитом возникают силы отталкивания.

    Правило Ленца вытекает из закона сохранения и превращения энергии. Если бы индукционные токи ускоряли вызывающее их движение, то создавалась бы работа из ничего. Катушка сама собой после небольшого толчка устремлялась бы навстречу магниту, и одновременно индукционный ток выделял бы в ней теплоту. В действительности же индукционный ток создается за счет работы по сближению магнита и катушки.

    Почему возникает индукционный ток? Глубокое объяснение явления электромагнитной индукции даланглийский физик Джемс Клерк Максвелл - творец законченной математической теории электромагнитного поля.

    Чтобы лучше понять суть дела, рассмотрим очень простой опыт. Пусть катушка состоит из одного витка проволоки и пронизывается переменным магнитным полем, перпендикулярным к плоскости витка. В катушке, естественно, возникает индукционный ток. Исключительно смело и неожиданно истолковал этот эксперимент Максвелл.

    При изменении магнитного поля в пространстве, по мысли Максвелла, возникает процесс, для которого присутствие проволочного витка не имеет никакого значения. Главное здесь - возникновение замкнутых кольцевых линий электрического поля, охватывающих изменяющееся магнитное поле. Под действием возникающего электрического поля приходят в движение электроны, и в витке возникает электрический ток. Виток - это просто прибор, позволяющий обнаружить электрическое поле.

    Сущность же явления электромагнитной индукции в том, что переменное магнитное поле всегда порождает в окружающем пространстве электрическое поле с замкнутыми силовыми линиями. Такое поле называется вихревым».

    Изыскания в области индукции, производимой земным магнетизмом, дали Фарадею возможность высказать еще в 1832 году идею телеграфа, которая затем и легла в основу этого изобретения. А вообще открытие электромагнитной индукции недаром относят к наиболее выдающимся открытиям XIX века - на этом явлении основана работа миллионов электродвигателей и генераторов электрического тока во всем мире...

    Источник информации: Самин Д. К. «Сто великих научных открытий»., М.:«Вече», 2002 г.