Рождение вселенной большой взрыв. Происхождение Вселенной. А был ли Большой взрыв

Теория Большого взрыва стала почти такой же общепринятой космологической моделью, как и вращение Земли вокруг Солнца. Согласно теории, около 14 млрд лет назад спонтанные колебания в абсолютной пустоте привели к появлению Вселенной. Нечто, сравнимое по размеру с субатомной частицей, расширилось до невообразимых размеров за доли секунды. Но в этой теории существует много проблем, над которыми бьются физики, выдвигая всё новые и новые гипотезы.


Что не так с теорией Большого взрыва

Из теории следует, что все планеты и звёзды образовались из пыли, размётанной по космосу в результате взрыва. Но что предшествовало ему, неясно: здесь наша математическая модель пространства-времени перестаёт работать. Вселенная возникла из начального сингулярного состояния, к которому не применить современную физику. Теория также не рассматривает причины возникновения сингулярности или материи и энергии для её возникновения. Считается, что ответ на вопрос о существовании и происхождении начальной сингулярности даст теория квантовой гравитации.

Большинство космологических моделей предсказывают, что полная Вселенная имеет размер намного больший, чем наблюдаемая часть - сферическая область с диаметром примерно 90 млрд световых лет. Мы видим только ту часть Вселенной, свет от которой успел достичь Земли за 13,8 млрд лет. Но телескопы становятся всё лучше, мы обнаруживаем всё более дальние объекты, и пока нет оснований считать, что этот процесс остановится.

С момента Большого взрыва Вселенная расширяется с ускорением . Сложнейшая загадка современной физики - вопрос о том, что вызывает ускорение. Согласно рабочей гипотезе, во Вселенной содержится невидимая составляющая, называемая «тёмной энергией». Теория Большого взрыва не объясняет, будет ли Вселенная расширяться бесконечно, и если да, то к чему это приведёт - к её исчезновению или чему-то ещё.

Хотя ньютоновскую механику потеснила релятивистская физика, её нельзя назвать ошибочной. Тем не менее восприятие мира и модели для описания Вселенной полностью изменились. Теория Большого взрыва предсказала ряд вещей, которые не были известны до того. Таким образом, если на её место придёт другая теория, то она должна быть похожей и расширить понимание мира.

Мы остановимся на самых интересных теориях, описывающих альтернативные модели Большого взрыва.


Вселенная как мираж чёрной дыры

Вселенная возникла благодаря коллапсу звезды в четырёхмерной Вселенной, считают учёные из Института теоретической физики «Периметр». Результаты их исследования опубликовал журнал Scientific American . Ниайеш Афшорди, Роберт Манн и Рази Пурхасан говорят, что наша трёхмерная Вселенная стала подобием «голографического миража» при схлопывании четырёхмерной звезды. В отличие от теории Большого взрыва, согласно которой Вселенная возникла из чрезвычайно горячего и плотного пространства-времени, где не применяются стандартные законы физики, новая гипотеза о четырёхмерной вселенной объясняет как причины зарождения, так и её стремительного расширения

Согласно сценарию, сформулированному Афшорди и его коллегами, наша трёхмерная Вселенная - это своеобразная мембрана, которая плывёт сквозь ещё более объёмную вселенную, существующую уже в четырёх измерениях. Если бы в этом четырёхмерном космосе существовали свои четырёхмерные звёзды, они бы тоже взрывались, как и трёхмерные в нашей Вселенной. Внутренний слой становился бы чёрной дырой, а внешний выбрасывался бы в пространство.

В нашей Вселенной чёрные дыры окружены сферой, называемой горизонтом событий. И если в трёхмерном пространстве эта граница двухмерная (как мембрана) , то в четырёхмерной вселенной горизонт событий будет ограничен сферой, существующей в трёх измерениях. Компьютерное моделирование коллапса четырёхмерной звезды показало, что её трёхмерный горизонт событий будет постепенно расширяться. Именно это мы и наблюдаем, называя рост 3D-мембраны расширением Вселенной, полагают астрофизики.


Большая заморозка

Альтернативой Большому взрыву может быть Большая заморозка. Команда физиков из Мельбурнского университета во главе с Джеймсом Кватчем представила модель рождения Вселенной, которая больше напоминает постепенный процесс заморозки аморфной энергии, чем её выплеск и расширение в трёх направлениях пространства.

Бесформенная энергия, по мнению учёных, подобно воде охладилась до кристаллизации, создав привычные три пространственных и одно временное измерение.

Теория Большой заморозки ставит под сомнение принятое в настоящее время утверждение Альберта Эйнштейна о непрерывности и плавности пространства и времени. Не исключено, что пространство имеет составные части - неделимые стандартные блоки наподобие крошечных атомов или пикселей в компьютерной графике. Эти блоки настолько малы, что их невозможно наблюдать, однако, следуя новой теории, можно обнаружить дефекты, которые должны преломлять потоки других частиц. Учёные вычислили такие эффекты с помощью математического аппарата, а теперь попытаются обнаружить их экспериментально.


Вселенная без начала и конца

Ахмед Фараг Али из Университета Бенха в Египте и Саурия Дас из Университета Летбриджа в Канаде предложили новое решение проблему сингулярности, отказавшись от Большого взрыва. Они привнесли в уравнение Фридмана, описывающее расширение Вселенной и Большой взрыв, идеи известного физика Дэвида Бома . «Удивительно, что небольшие поправки потенциально могут решить так много вопросов», - говорит Дас.

Полученная модель объединила в себе общую теорию относительности и квантовую теорию. Она не только отрицает сингулярность, предшествовавшую Большому взрыву, но и не допускает того, что Вселенная со временем сожмётся обратно в первоначальное состояние. Согласно полученным данным, Вселенная имеет конечный размер и бесконечное время жизни. В физическом выражении модель описывает Вселенную, наполненную гипотетической квантовой жидкостью, которая состоит из гравитонов - частиц, обеспечивающих гравитационное взаимодействие.

Учёные также утверждают, что их выводы соотносятся с последними результатами измерения плотности Вселенной.


Бесконечная хаотическая инфляция

Термин «инфляция» обозначает стремительное расширение Вселенной, происходившее по экспоненте в первые мгновения после Большого взрыва. Сама по себе теория инфляции не опровергает теорию Большого взрыва, а лишь по-другому интерпретирует её. Эта теория решает несколько фундаментальных проблем физики.

Согласно инфляционной модели, вскоре после зарождения Вселенная очень короткое время расширялась по экспоненте: её размер многократно удваивался. Учёные полагают, что за 10 в -36 степени секунд Вселенная увеличилась в размерах как минимум в 10 в 30–50 степени раз, а возможно, и больше. В конце инфляционной фазы Вселенная заполнилась сверхгорячей плазмой из свободных кварков, глюонов, лептонов и высокоэнергетичных квантов.

Концепция подразумевает , что в мире существует множество изолированных друг от друга вселенных с разным устройством

Физики пришли к выводу, что логика инфляционной модели не противоречит идее постоянного множественного рождения новых вселенных. Квантовые флуктуации - такие же, как те, из-за которых появился наш мир - могут возникать в любом количестве, если для этого есть подходящие условия. Вполне возможно, что наше мироздание вышло из флуктуационной зоны, сформировавшейся в мире-предшественнике. Можно также допустить, что когда-нибудь и где-нибудь в нашей Вселенной образуется флуктуация, которая «выдует» юную вселенную совершенно другого рода. По такой модели дочерние вселенные могут отпочковываться непрерывно. При этом вовсе не обязательно, что в новых мирах устанавливаются одни и те же физические законы. Концепция подразумевает, что в мире существует множество изолированных друг от друга вселенных с разным устройством.


Циклическая теория

Пол Стейнхардт, один из физиков, заложивших основы инфляционной космологии, решил развить эту теорию и дальше. Учёный, который возглавляет Центр теоретической физики в Принстоне, совместно с Нэйлом Тьюроком из Института теоретической физики «Периметр» изложил альтернативную теорию в книге Endless Universe: Beyond the Big Bang («Бесконечная Вселенная: За гранью Большого взрыва»). Их модель основана на обобщении теории квантовых суперструн, известной как М-теория. Согласно ей, физический мир имеет 11 измерений - десять пространственных и одно временное. В нём «плавают» пространства меньших размерностей, так называемые браны (сокращение от «мембраны»). Наша Вселенная - просто одна из таких бран.

Модель Стейнхардта и Тьюрока утверждает, что Большой взрыв произошёл в результате столкновения нашей браны с другой браной - неизвестной нам вселенной. По этому сценарию столкновения происходят бесконечно. Согласно гипотезе Стейнхардта и Тьюрока, рядом с нашей браной «плавает» ещё одна трёхмерная брана, отделённая крошечным расстоянием. Она также расширяется, уплощается и пустеет, но через триллион лет браны начнут сближаться и в конце концов столкнутся. При этом выделится огромное количество энергии, частиц и излучения. Этот катаклизм запустит очередной цикл расширения и охлаждения Вселенной. Из модели Стейнхардта и Тьюрока следует, что эти циклы были и в прошлом и обязательно повторятся в будущем. С чего эти циклы начались, теория умалчивает.


Вселенная
как компьютер

Ещё одна гипотеза об устройстве мироздания гласит, что весь наш мир - это не более чем матрица или компьютерная программа. Идею о том, что Вселенная представляет собой цифровой компьютер, впервые выдвинул немецкий инженер и пионер компьютеростроения Конрад Цузе в книге Calculating Space («Вычислительное пространство»). Среди тех, кто также рассматривал Вселенную как гигантский компьютер, значатся физики Стивен Вольфрам и Герард "т Хоофт.

Теоретики цифровой физики предполагают, что Вселенная - по сути информация, и, следовательно, она вычислима. Из этих предположений следует, что Вселенную можно рассматривать как результат работы компьютерной программы или цифрового вычислительного устройства. Этот компьютер может быть, например, гигантским клеточным автоматом или универсальной машиной Тьюринга .

Косвенным доказательством виртуальной природы Вселенной называют принцип неопределённости в квантовой механике

Согласно теории, всякий предмет и событие физического мира происходит из постановки вопросов и регистрации ответов «да» или «нет». То есть за всем, что нас окружает, скрывается некий код, аналогичный бинарному коду компьютерной программы. А мы - своего рода интерфейс, с помощью которого появляется доступ к данным «вселенского интернета». Косвенным доказательством виртуальной природы Вселенной называют принцип неопределённости в квантовой механике: частицы материи могут существовать в неустойчивой форме, а «закрепляются» в конкретном состоянии только при наблюдении за ними.

Последователь цифровой физики Джон Арчибальд Уилер писал : «Не было бы неразумным представить, что информация находится в ядре физики так же, как в ядре компьютера. Всё из бита. Иными словами, всё сущее - каждая частица, каждое силовое поле, даже сам пространственно-временной континуум - получает свою функцию, свой смысл и, в конечном счёте, само своё существование».

Большой взрыв относится к разряду теорий, пытающихся в полном объеме проследить историю рождения Вселенной, определить начальные, текущие и конечные процессы в ее жизни.

Было ли что-то до того, как появилась Вселенная? Этот краеугольный, практически метафизический вопрос задается учеными и по сегодняшний день. Возникновение и эволюция мироздания всегда были и остаются предметом жарких споров, невероятных гипотез и взаимоисключающих теорий. Основными версиями происхождения всего, что нас окружает, по церковной трактовке предполагалось божественное вмешательство, а научный мир поддерживал гипотезу Аристотеля о статичности мироздания. Последней модели придерживался Ньютон, защищавший безграничность и постоянство Вселенной, и Кант, развивший эту теорию в своих трудах. В 1929 году американский астроном и космолог Эдвин Хаббл кардинально изменил взгляды ученых на мир.

Он не только обнаружил наличие многочисленных галактик, но и расширение Вселенной – непрерывное изотропное увеличение размеров космического пространства, начавшееся в миг Большого взрыва.

Кому мы обязаны открытием Большого взрыва?

Работы Альберта Эйнштейна над теорией относительности и его гравитационные уравнения позволили де Ситтеру создать космологическую модель Вселенной. Дальнейшие изыскания были привязаны к этой модели. В 1923 г. Вейль предположил, что помещенное в космическом пространстве вещество должно расширяться. Огромное значение в разработке этой теории имеет работа выдающегося математика и физика А. А. Фридмана. Еще в 1922 г. он допустил расширение Вселенной и сделал обоснованные выводы о том, что начало всей материи находилось в одной безгранично плотной точке, а развитие всему дал Большой взрыв. В 1929 г. Хаббл опубликовал свои статьи, объясняющие подчинение лучевой скорости расстоянию, впоследствии эта работа стала называться «законом Хаббла».

Г. А. Гамов, опираясь на теорию Фридмана о Большом взрыве, разработал идею о высокой температуре исходного вещества. Также он предположил наличие космического излучения, не пропавшего с расширением и остыванием мира. Ученый выполнил предварительные расчеты возможной температуры остаточного излучения. Предполагаемое им значение находилось в диапазоне 1-10 К. К 1950 г. Гамов сделал более точные подсчеты и объявил результат в 3 К. В 1964 радиоастрономы из Америки, занимаясь усовершенствованием антенны, путем исключения всех возможных сигналов, определили параметры космического излучения. Его температура оказалась равной 3 К. Эти сведения стали важнейшим подтверждением работы Гамова и существования реликтового излучения. Последующие измерения космического фона, проведенные в открытом космосе, окончательно доказали верность расчетов ученого. Ознакомится с картой реликтового излучения можно по .

Современные представления о теории Большого взрыва: как это произошло?

Одной из моделей, комплексно объясняющих появление и процессы развития известной нам Вселенной, стала теория Большого взрыва. Согласно широко принятой сегодня версии, изначально присутствовала космологическая сингулярность – состояние, обладающее бесконечной плотностью и температурой. Физиками было разработано теоретическое обоснование рождения Вселенной из точки, имевшей чрезвычайную степень плотности и температуры. После возникновения Большого взрыва пространство и материя Космоса начали непрекращающийся процесс расширения и стабильного охлаждения. Согласно последним исследованиям начало мирозданию было положено не менее 13,7 млрд. лет назад.

Отправные периоды в формировании Вселенной

Первый момент, воссоздание которого допускается физическими теориями, – это Планковская эпоха, формирование которой стало возможным спустя 10-43 секунд после Большого взрыва. Температура материи доходила до 10*32 К, а ее плотность равнялась 10*93 г/см3. В этот период гравитация обрела самостоятельность, отделившись от основополагающих взаимодействий. Непрекращающееся расширение и снижение температуры вызвали фазовый переход элементарных частиц.

Следующий период, характеризующийся показательным расширением Вселенной, наступил еще через 10-35 секунд. Его назвали «Космической инфляцией». Произошло скачкообразное расширение, во много раз превышающее обычное. Этот период дал ответ на вопрос, почему температура в различных точках Вселенной одинакова? После Большого взрыва вещество не сразу разлетелось по Вселенной, еще 10-35 секунд оно было довольно компактным и в нем установилось тепловое равновесие, не нарушенное при инфляционном расширении. Период дал базовый материал – кварк-глюонную плазму, использовавшуюся для формирования протонов и нейтронов. Этот процесс осуществился после дальнейшего уменьшения температуры, он именуется «бариогенезисом». Зарождение материи сопровождалось одновременным возникновением антиматерии. Два антагонистичных вещества аннигилировали, становясь излучением, но количество обычных частиц превалировало, что и позволило возникнуть Вселенной.

Очередной фазовый переход, произошедший после убывания температуры, привел к возникновению известных нам элементарных частиц. Пришедшая вслед за этим эпоха «нуклеосинтеза» ознаменовалась объединением протонов в легкие изотопы. Первые образованные ядра имели короткий срок существования, они распадались при неизбежных столкновениях с другими частицами. Более устойчивые элементы возникли уже после трех минут, прошедших после сотворения мира.

Следующей знаменательной вехой стало доминирование гравитации над другими имеющимися силами. Через 380 тыс. лет со времени Большого взрыва появился атом водорода. Увеличение влияния гравитации послужило окончанием начального периода формирования Вселенной и дало старт процессу возникновения первых звездных систем.

Даже спустя почти 14 млрд. лет в космосе все еще сохранилось реликтовое излучение. Его существование в комплексе с красным смещением приводится как аргумент в подтверждение состоятельности теории Большого взрыва.

Космологическая сингулярность

Если, используя общую теорию относительности и факт непрерывного расширения Вселенной, вернутся к началу времени, то размеры мироздания будут равны нулю. Начальный момент или наука не может достаточно точно описать, используя физические знания. Применяемые уравнения, не подходят для столь малого объекта. Необходим симбиоз, способный соединить квантовую механику и общую теорию относительности, но он, к сожалению, пока еще не создан.

Эволюция Вселенной: что ее ожидает в будущем?

Ученые рассматривают два возможных варианта развития событий: расширение Вселенной никогда не закончится, или же она достигнет критической точки и начнется обратный процесс – сжатие. Этот основополагающий выбор зависит от величины средней плотности вещества, находящегося в ее составе. Если вычисленное значение меньше критического, прогноз благоприятный, если больше, то мир вернется к сингулярному состоянию. Ученые в настоящее время не знают точной величины описываемого параметра, поэтому вопрос о будущем Вселенной завис в воздухе.

Отношение религии к теории Большого взрыва

Основные вероисповедания человечества: католицизм, православие, мусульманство, по-своему поддерживают эту модель сотворения мира. Либеральные представители этих религиозных конфессий соглашаются с теорией возникновения мироздания в результате некоего необъяснимого вмешательства, определяемого как Большой взрыв.

Знакомое всему миру имя теории – «Большой взрыв» – было невольно подарено противником версии о расширении Вселенной Хойлом. Он считал такую идею «совершенно неудовлетворительной». После публикации его тематической лекций занятный термин тут же подхватила общественность.

Причины, вызвавшие Большой взрыв, достоверно неизвестны. По одной из многочисленных версий, принадлежащей А. Ю. Глушко, сжатое в точку исходное вещество было черной гипер-дырой, а причиной взрыва стал контакт двух таких объектов, состоящих из частиц и античастиц. При аннигиляции материя частично уцелела и дала начало нашей Вселенной.

Инженеры Пензиас и Уилсон, открывшие реликтовое излучение Вселенной, получили Нобелевские премии по физике.

Показатели температуры реликтового излучения изначально было очень высоким. Спустя несколько миллионов лет этот параметр оказался в пределах, обеспечивающих зарождение жизни. Но к этому периоду успело сформироваться лишь небольшое количество планет.

Астрономические наблюдения и исследования помогают найти ответы на важнейшие для человечества вопросы: «Как все появилось, и что ждет нас в будущем?». Вопреки тому, что не все проблемы решены, и первопричина появления Вселенной не имеет строгого и стройного разъяснения, теория Большого взрыва обрела достаточное количество подтверждений, делающих ее основной и приемлемой моделью возникновения мироздания.

Представление о развитии Вселенной закономерно привело постановке проблемы начала эволюции (рождения) Вселенной и ее

конца (смерти). В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причин и процесса рождения самой Вселенной. Из всей совокупности современных космологических теорий только теория Большого взрыва Г. Гамова смогла к настоящему времени удовлетворительно объяснить почти все факты, связанные с этой проблемой. Основные черты модели Большого взрыва сохранились до сих пор, хотя и были позже дополнены теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейн-хардтом и дополненной советским физиком А.Д. Линде.

В 1948 г. выдающийся американский физик русского происхождения Г. Гамов выдвинул предположение, что физическая Вселенная образовалась в результате гигантского взрыва, происшедшего примерно 15 млрд. лет тому назад. Тогда все вещество и вся энергия Вселенной были сконцентрированы в одном крохотном сверхплотном сгустке. Если верить математическим расчетам, то в начале расширения радиус Вселенной был и вовсе равен нулю, а ее плотность равна бесконечности. Это начальное состояние называется сингулярностью - точечный объем с бесконечной плотностью. Известные законы физики в сингулярности не работают. В этом состоянии теряют смысл понятия пространства и времени, поэтому бессмысленно спрашивать, где находилась эта точка. Также современная наука ничего не может сказать о причинах появления такого состояния.

Тем не менее, согласно принципу неопределенности Гейзенбер-га вещество невозможно стянуть в одну точку, поэтому считается, что Вселенная в начальном состоянии имела определенную плотность и размеры. По некоторым подсчетам, если все вещество наблюдаемой Вселенной, которое оценивается примерно в 10 61 г, сжать до плотности 10 94 г/см 3 , то оно займет объем около 10 -33 см 3 . Ни в какой электронный микроскоп разглядеть ее было бы невозможно. Долгое время ничего нельзя было сказать о причинах Большого взрыва и переходе Вселенной к расширению. Но сегодня появились некоторые гипотезы, пытающиеся объяснить эти процессы. Они лежат в основе инфляционной модели развития Вселенной.

«Начало» Вселенной

Основная идея концепции Большого взрыва состоит в том, что Вселенная на ранних стадиях возникновения имела неустойчивое вакуумоподобное состояние с большой плотностью энергии. Эта энергия возникла из квантового излучения, т.е. как бы из ничего. Дело в том, что в физическом вакууме отсутствуют фиксируемые

частицы, поля и волны, но это не безжизненная пустота. В вакууме имеются виртуальные частицы, которые рождаются, имеют мимолетное бытие и тут же исчезают. Поэтому вакуум «кипит» виртуальными частицами и насыщен сложными взаимодействиями между ними. Причем, энергия, заключенная в вакууме, располагается как бы на его разных этажах, т.е. имеется феномен разностей энергетических уровней вакуума.

Пока вакуум находится в равновесном состоянии, в нем существуют лишь виртуальные (призрачные) частицы, которые занимают в долг у вакуума энергию на короткий промежуток времени, чтобы родиться, и быстро возвращают позаимствованную энергию, чтобы исчезнуть. Когда же вакуум по какой-либо причине в некоторой исходной точке (сингулярности) возбудился и вышел из состояния равновесия, то виртуальные частицы стали захватывать энергию без отдачи и превращались в реальные частицы. В конце концов в определенной точке пространства образовалось огромное множество реальных частиц вместе со связанной ими энергией. Когда же возбужденный вакуум разрушился, то высвободилась гигантская энергия излучения, а суперсила сжала частицы в сверхплотную материю. Экстремальные условия «начала», когда даже пространство-время было деформировано, предполагают, что и вакуум находился в особом состоянии, которое называют «ложным» вакуумом. Оно характеризуется энергией предельно высокой плотности, которой соответствует предельно высокая плотность вещества. В этом состоянии вещества в нем могут возникать сильнейшие напряжения, отрицательные давления, равносильные гравитационному отталкиванию такой величины, что оно вызвало безудержное и стремительное расширение Вселенной - Большой взрыв. Это и было первотолчком, «началом» нашего мира.

С этого момента начинается стремительное расширение Вселенной, возникают время и пространство. В это время идет безудержное раздувание «пузырей пространства», зародышей одной или нескольких вселенных, которые могут отличаться друг от друга своими фундаментальными константами и законами. Один из них стал зародышем нашей Метагалактики.

По разным оценкам, период «раздувания», идущий по экспоненте, занимает невообразимо малый промежуток времени - до 10 - 33 с после «начала». Он называется инфляционным периодом. За это время размеры Вселенной увеличились в 10 50 раз, от миллиардной доли размера протона до размеров спичечного коробка.

К концу фазы инфляции Вселенная была пустой и холодной, но когда инфляция иссякла, Вселенная вдруг стала чрезвычайно «горячей». Этот всплеск тепла, осветивший космос, обусловлен огромными запасами энергии, заключенными в «ложном» вакууме. Такое состояние вакуума очень неустойчиво и стремится к распаду. Когда

распад завершается, отталкивание исчезает, заканчивается и инфляция. А энергия, связанная в виде множества реальных частиц, высвободилась в виде излучения, мгновенно нагревшего Вселенную до 10 27 К. С этого момента Вселенная развивалась согласно стандартной теории «горячего» Большого взрыва.

Ранний этап эволюции Вселенной

Сразу после Большого взрыва Вселенная представляла собой плазму из элементарных частиц всех видов и их античастиц в состоянии термодинамического равновесия при температуре 10 27 К, которые свободно превращались друг в друга. В этом сгустке существовали только гравитационное и большое (Великое) взаимодействия. Потом Вселенная стала расширяться, одновременно ее плотность и температура уменьшались. Дальнейшая эволюция Вселенной происходила поэтапно и сопровождалась, с одной стороны, дифференциацией, а с другой - усложнением ее структур. Этапы эволюции Вселенной различаются характеристиками взаимодействия элементарных частиц и называются эрами. Самые важные изменения заняли менее трех минут.

Адронная эра продолжалась 10 -7 с. На этом этапе температура понижается до 10 13 К. При этом появляются все четыре фундаментальных взаимодействия, прекращается свободное существование кварков, они сливаются в адроны, важнейшими среди которых являются протоны и нейтроны. Наиболее значимым событием стало глобальное нарушение симметрии, которое произошло в первые мгновения существования нашей Вселенной. Число частиц оказалось чуть больше, чем число античастиц. Причины такой асимметрии точно неизвестны до сих пор. В общем плазмоподобном сгустке на каждый миллиард пар частиц и античастиц на одну частицу оказывалось больше, ей не хватало пары для аннигиляции. Это и определило дальнейшее появление вещественной Вселенной с галактиками, звездами, планетами и разумными существами на некоторых из них.

Лептонная эра продолжалась до 1 с после начала. Температура Вселенной понизилась до 10 10 К. Главными ее элементами были лептоны, которые участвовали во взаимных превращениях протонов и нейтронов. В конце этой эры вещество стало прозрачным для нейтрино, они перестали взаимодействовать с веществом и с тех пор дожили до наших дней.

Эра излучения (фотонная эра) продолжалась 1 млн. лет. За это время температура Вселенной снизилась с 10 млрд. К до 3000 К. На протяжении данного этапа происходили важнейшие для дальнейшей эволюции Вселенной процессы первичного нуклеосинтеза - соединение протонов и нейтронов (их было примерно в 8 раз мень-

ше, чем протонов) в атомные ядра. К концу этого процесса вещество Вселенной состояло на 75% из протонов (ядер водорода), около 25% составляли ядра гелия, сотые доли процента пришлись на дейтерий, литий и другие легкие элементы, после чего Вселенная стала прозрачной для фотонов, так как излучение отделилось от вещества и образовало то, что в нашу эпоху называется реликтовым излучением.

Затем почти 500 тысяч лет не происходило никаких качественных изменений - шло медленное остывание и расширение Вселенной. Вселенная, оставаясь однородной, становилась все более разреженной. Когда она остыла до 3000 К, ядра атомов водорода и гелия уже могли захватывать свободные электроны и превращаться при этом в нейтральные атомы водорода и гелия. В итоге образовалась однородная Вселенная, представлявшая собой смесь трех почти не взаимодействующих субстанций: барионного вещества (водород, гелий и их изотопы), лептонов (нейтрино и антинейтрино) и излучения (фотоны). К этому времени уже не было высоких температур и больших давлений. Казалось, в перспективе Вселенную ждет дальнейшее расширение и остывание, образование «лептонной пустыни» - что-то вроде тепловой смерти. Но этого не случилось; напротив, произошел скачок, создавший современную структурную Вселенную, который, по современным оценкам, занял от 1 до 3 миллиардов лет.

Большой взрыв

Большой Взрыв. Так называется теория, вернее одна из теорий, возникновения или, если угодно, сотворения Вселенной. Название, пожалуй, слишком несерьезное для столь устрашающего и вызывающего благоговейный трепет события. В особенности устрашающего, если когда – нибудь вы задавали себе очень трудные вопросы о мироздании.

Например, если Вселенная - это все то, что есть, то каким образом это началось? И что было до этого? Если пространство не бесконечно, то что за пределами его? И в чем собственно должно помещаться это нечто? Как можно понять слово «бесконечно»?

Эти вещи трудны для понимания. Более того, когда об этом начинаешь задумываться, охватывает жуткое ощущение чего-то величественно – ужасного. Но вопросы о мироздании - это одни из самых главных вопросов, которые задает себе человечество на протяжение своей истории.

Что послужило началом существования Вселенной?

Большинство ученых убеждено, что начало существованию Вселенной положено грандиозным большим взрывом вещества, который произошел около 15 миллиардов лет назад. Многие годы большинство ученых разделяло гипотезу о том, что начало Вселенной было положено грандиозным взрывом, который ученые шутливо окрестили «Большой Взрыв». По их мнению, вся материя и все пространство, которое сейчас представлено миллиардами и миллионами галактик и звезд, 15 миллиардов лет назад умещалось в мизерном пространстве размером не превышающем нескольких слов в этом предложении.

Материалы по теме:

Самые большие планеты Вселенной

Как образовывалась Вселенная?

Ученые полагают, что 15 миллиардов лет назад этот маленький объем взорвался мельчайшими, меньшими чем атомы, частицами, положив начало существованию Вселенной. Первоначально она представляла собой туманность из мелких частиц. Позже при соединении этих частиц образовались атомы. Из атомов же сформировались звездные галактики . Со времени этого Большого Взрыва Вселенная продолжает расширяться, как раздуваемый воздушный шар.

Сомнения в теории Большого Взрыва

Но за последние несколько лет ученые, занимающиеся изучением структуры Вселенной, совершили несколько неожиданных открытий. Некоторые из них ставят под сомнение теорию Большого Взрыва. Что поделаешь, наш мир не всегда соответствует нашим удобным представлениям о нем.

Распределение вещества при взрыве

Одна проблема заключается в том способе, которым материя распределена по Вселенной. Когда взрывается какой-либо предмет, то его содержимое разлетается равномерно во всех направлениях. Другими словами, если материя в начале была спрессована в малом объеме, а затем взорвалась, то вещество должно было равномерно распределиться по пространству Вселенной.

Реальность, однако, сильно отличается от ожидаемых представлений. Мы живем в весьма неравномерно заполненной Вселенной. При взгляде в космос взору предстают отдельные удаленные друг от друга сгустки материи. Громадные галактики разбросаны там и сям по космическому пространству. Между галактиками простираются огромные участки ничем не заполненной пустоты. На более высоком уровне галактики сгруппированы в гроздья - кластеры, а эти последние - в мега кластеры. Как бы то ни было ученые до сих пор не пришли к согласию в вопросе о том, как и почему образовались именно такие структуры. К тому же со всем недавно возникла новая еще более серьезная проблема.

В научном мире принято считать, что Вселенная произошла в результате Большого взрыва. Строится данная теория на том, что энергия и материя (основы всего сущего) ранее находились в состоянии сингулярности. Оно, в свою очередь, характеризуется бесконечностью температуры, плотности и давления. Состояние сингулярности само по себе отвергает все известные современному миру законы физики. Ученые считают, что Вселенная возникла из микроскопической частицы, которая в силу неизвестных пока причин пришла в далеком прошлом в нестабильное состояние и взорвалась.

Термин «Большой взрыв» стал применяться с 1949 года после публикации в научно-популярных изданиях работ ученого Ф.Хойла. Сегодня теория «динамической эволюционирующей модели» разработана настолько хорошо, что физики могут описать процессы, происходящие во Вселенной уже через 10 секунд после взрыва микроскопической частицы, положившей начало всему сущему.

Доказательств теории существует несколько. Одним из главных является реликтовое излучение, которое пронизывает всю Вселенную. Оно могло возникнуть, по мнению современных ученых, только в результате Большого взрыва, благодаря взаимодействию микроскопических частиц. Именно реликтовое излучение позволяет узнать о тех временах, когда Вселенная была похожа на пылающее пространство, а звезд, планет и самой галактики не было и в помине. Вторым доказательством рождения всего сущего из Большого взрыва считается космологическое красное смещение, заключающееся в уменьшении частоты излучения. Это подтверждает удаление звезд, галактик от Млечного пути в частности и друг от друга в целом. То есть, свидетельствует о том, что Вселенная расширялась ранее и продолжает это делать до сих пор.

Краткая история Вселенной

  • 10 -45 - 10 -37 сек - инфляционное расширение

  • 10 -6 сек - возникновение кварков и электронов

  • 10 -5 сек - образование протонов и нейтронов

  • 10 -4 сек - 3 мин - возникновение ядер дейтерия, гелия и лития

  • 400 тыс. лет - образование атомов

  • 15 млн. лет - продолжение расширения газового облака

  • 1 млрд. лет - зарождение первых звезд и галактик

  • 10 - 15 млрд. лет - появление планет и разумной жизни

  • 10 14 млрд. лет - прекращение процесса рождения звезд

  • 10 37 млрд. лет - истощение энергии всех звезд

  • 10 40 млрд. лет - испарение черных дыр и рождение элементарных частиц

  • 10 100 млрд. лет - завершение испарения всех черных дыр

Теория Большого взрыва стала настоящим прорывом в науке. Она позволила ученым ответить на множество вопросов относительно рождения Вселенной. Но одновременно эта теория породила новые загадки. Главная из них заключается в причине самого Большого взрыва. Второй вопрос, на который нет ответа у современной науки - как появилось пространство, время. По мнению некоторых исследователей, они родились вместе с материей, энергией. То есть, являются результатом Большого взрыва. Но тогда получается, что и у времени, пространства должно быть какое-то начало. То есть, некая сущность, постоянно существующая и не зависящая от их показателей, вполне могла положить начало процессам нестабильности в микроскопической частице, породившей Вселенную.

Чем больше исследований проводится в этом направлении, тем больше вопросов возникает у астрофизиков. Ответы на них ждут человечество в будущем.