Структурно-функциональная организация ферментов. Регуляция активности ферментов. Определение амилазной активности мочи. Изоферменты. Строение, биологическая роль, диагностическое значение определения, изменение в онтогенезе и при патологии органа, диагнос

8.7.1. В клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно. При помощи внутриклеточных мембран клетка разделена на отсеки или компартменты (рисунок 8.18). В каждом из них осуществляются строго определенные биохимические процессы и сосредоточены соответствующие ферменты или полиферментные комплексы. Вот несколько характерных примеров.

Рисунок 8.18. Внутриклеточное распределение ферментов различных метаболических путей.

В лизосомах сосредоточены преимущественно разнообразные гидролитические ферменты. Здесь протекают процессы расщепления сложных органических соединений на их структурные компоненты.

В митохондриях находятся сложные системы окислительно-восстановительных ферментов.

Ферменты активирования аминокислот распределены в гиалоплазме, но они же есть и в ядре. В гиалоплазме присутствуют многочисленные метаболоны гликолиза, структурно объединенные с таковыми пентозофосфатного цикла, что обеспечивает взаимосвязь дихотомического и апотомического путей распада углеводов.

В то же время ферменты, ускоряющие перенос аминокислотных остатков на растущий конец полипептидной цепи и катализирующие некоторые другие реакции в процессе биосинтеза белка, сосредоточены в рибосомальном аппарате клетки.

В клеточном ядре локализованы в основном нуклеотидилтрансферазы, ускоряющие реакцию переноса нуклеотидных остатков при новообразовании нуклеиновых кислот.

8.7.2. Распределение ферментов по субклеточным органеллам изучают после предварительного фракционирования клеточных гомогенатов путем высокоскоростного центрифугирования, определяя содержание ферментов в каждой фракции.

Локализацию данного фермента в ткани или клетке часто удается установить in situ гистохимическими методами («гистоэнзимология»). Для этого тонкие (от 2 до 10 мкм) срезы замороженной ткани обрабатывают раствором субстрата, к которому специфичен данный фермент. В тех местах, где находится фермент, образуется продукт катализируемой этим ферментом реакции. Если продукт окрашен и нерастворим, он остается на месте образования и позволяет локализовать фермент. Гистоэнзимология дает наглядную и в известной мере физиологичную картину распределения ферментов.

Ферментные системы ферментов, сосредоточенные во внутриклеточных структурах, тонко координированы друг с другом. Взаимосвязь катализируемых ими реакций обеспечивает жизнедеятельность клеток, органов, тканей и организма в целом.

При исследовании активности различных ферментов в тканях здорового организма можно получить картину их распространения. Оказывается, что некоторые ферменты широко распространены во многих тканях, но в разных концентрациях, а другие очень активны в экстрактах, полученных из одной или нескольких тканей, и практически отсутствуют в остальных тканях организма.

Рисунок 8.19. Относительная активность некоторых ферментов в тканях человека, выраженная в процентах от активности в ткани с максимальной концентрацией данного фермента (Мосс, Баттерворт, 1978).

8.7.3. Понятие об энзимопатиях. В 1908 году английский врач Арчибальд Гаррод высказал предположение, что причиной ряда заболеваний может являться отсутствие какого-либо из ключевых ферментов, участвующих в обмене веществ. Он ввёл понятие "inborn errors of metabolism" (врождённый дефект обмена веществ). В дальнейшем эта теория была подтверждена новыми данными, полученными в области молекулярной биологии и патологической биохимии.

Информация о последовательности аминокислот в полипептидной цепи белка записана в соответствующем участке молекулы ДНК в виде последовательности тринуклеотидных фрагментов - триплетов или кодонов. Каждый триплет кодирует определённую аминокислоту. Такое соответствие называется генетическим кодом. Причём некоторые аминокислоты могут быть закодированы при помощи нескольких кодонов. Существуют также специальные кодоны, являющиеся сигналами для начала синтеза полипептидной цепи и его прекращения. К настоящему времени генетический код полностью расшифрован. Он является универсальным для всех видов живых организмов.

Реализация информации, заложенной в молекуле ДНК, включает несколько этапов. Сначала в клеточном ядре в процессе транскрипции синтезируется матричная РНК (мРНК), поступающая в цитоплазму. В свою очередь, мРНК служит матрицей для трансляции - синтеза полипептидных цепей на рибосомах. Таким образом, природа молекулярных болезней определяется нарушением структуры и функции нуклеиновых кислот и контролируемых ими белков.

8.7.4. Поскольку информация о структуре всех белков клетки содержится в последовательности нуклеотидов ДНК, а каждая аминокислота определяется триплетом нуклеотидов, изменение первичной структуры ДНК может в конечном счёте оказать глубокое влияние на синтезируемый белок. Подобные изменения происходят за счёт ошибок репликации ДНК, когда одно азотистое основание заменяется другим, либо в результате действия радиации или при химической модификации. Все возникшие таким образом наследуемые дефекты называются мутациями . Они могут приводить к неправильному считыванию кода и делеции (выпадению) ключевой аминокислоты, замене одной аминокислоты другой, преждевременной остановке белкового синтеза или добавлению аминокислотных последовательностей. Учитывая зависимость пространственной упаковки белка от линейной последовательности в нём аминокислот, можно полагать, что подобные дефекты способны изменить структуру белка, а значит, и его функцию. Тем не менее, многие мутации обнаруживаются только в лабораторных условиях и не оказывают вредного воздействия на функции белка. Таким образом, ключевым моментом является локализация изменений в первичной структуре. Если положение замененной аминокислоты окажется критическим для формирования третичной структуры и образования каталитического центра фермента, то мутация является серьёзной и может проявиться как заболевание.

Последствия недостаточности одного фермента в цепи реакций обмена веществ могут проявляться по-разному. Предположим, что превращение соединения A в соединение B катализирует фермент Е и что соединение C встречается на альтернативном пути превращений (рисунок 8.20):

Рисунок 8.20. Схема альтернативных путей биохимических превращений.

Последствиями недостаточности фермента могут быть следующие явления:

  1. недостаточность продукта ферментативной реакции (B ). В качестве примера можно указать на снижение содержания глюкозы в крови при некоторых формах гликогенозов;
  2. накопление вещества (A ), превращение которого катализирует фермент (например, гомогентизиновая кислота при алкаптонурии). При многих лизосомных болезнях накопления, вещества, в норме подвергающиеся гидролизу в лизосомах, накапливаются в них в связи с недостаточностью одного из ферментов;
  3. отклонение на альтернативный путь с образованием некоторых биологически активных соединений (C ). К этой группе явлений относится экскреция с мочой фенилпировиноградной и фенилмолочной кислот, образующихся в организме больных фенилкетонурией в результате активации вспомогательных путей распада фенилаланина.

Если метаболическое превращение в целом регулируется по принципу обратной связи конечным продуктом, то эффекты двух последних типов аномалий будут более значительными. Так, например, при порфириях (врождённых нарушениях синтеза гема) устраняется подавляющего эффекта гема на начальные реакции синтеза, что приводит к образованию избыточных количеств промежуточных продуктов метаболического пути, которые обладают токсическим действием на клетки кожи и нервной системы.

Факторы внешней среды могут усиливать или даже полностью определять клинические проявления некоторых врождённых нарушений обмена веществ. Например, у многих пациентов с недостаточностью глюкозо-6-фосфатдегидрогеназы заболевание начинается только после приёма таких лекарственных средств, как примахин. В отсутствие контактов с лекарственными средствами такие люди производят впечатление здоровых.

8.7.5. О недостаточности фермента обычно судят косвенно по повышению концентрации исходного вещества, которое в норме подвергается превращениям под действием данного фермента (например, фенилаланин при фенилкетонурии). Прямое определение активности таких ферментов проводят только в специализированных центрах, но по возможности диагноз следует подтверждать этим методом. Пренатальная (дородовая) диагностика некоторых врождённых нарушений метаболизма возможна путём иследования клеток амниотической жидкости, полученных на ранних стадиях беременности и культивируемых in vitro.

Некоторые врождённые нарушения метаболизма поддаются лечению путём доставки в организм недостающего метаболита или путём ограничения поступления в желудочно-кишечный тракт предшественников нарушенных процессов обмена веществ. Иногда могут быть удалены накапливающиеся продукты (например, железо при гемохроматозе).

Ферменты, катализирующие одну и ту же химическую реакцию, но отличающиеся по первичной структуре белка, называют изофермен-тами, или изоэнзимами. Они катализируют один и тот же тип реакции с принципиально одинаковым механизмом, но отличаются друг от друга кинетическими параметрами, условиями активации, особенностями связи апофермента и кофермента. Природа появления изоферментов разнообразна, но чаще всего обусловлена различиями в структуре генов, кодирующих эти изоферменты. Следовательно, изоферменты различаются по первичной структуре белковой молекулы и, соответственно, по физико-химическим свойствам. На различиях в физико-химических свойствах основаны методы определения изоферментов.

По своей структуре изоферменты в основном являются олигомерными белками. Причём та или иная ткань преимущественно синтезирует определённые виды протомеров. В результате определённой комбинации этих протомеров формируются ферменты с различной структурой - изомерные формы. Обнаружение определённых изоферментных форм ферментов позволяет использовать их для диагностики заболеваний.

Фермент лактатдегидрогеназа (ЛДГ) катализирует обратимую реакцию окисления лактата (молочной кислоты) до пирувата (пировиноградной кислоты). Повышение активности наблюдают при острых поражениях сердца, печени, почек, а также при мегалобластных и гемолитических анемиях. Однако это указывает на повреждение лишь одной из перечисленных тканей.

Креатинкиназа (КК) катализирует реакцию образования креатинфосфата. Определение активности КК в плазме крови имеет диагностическое значение при инфаркте миокарда (происходит повышение уровня МВ-изоформы). Количество изоформы ММ может повышаться при травмах и повреждениях скелетных мышц. Изоформа ВВ не может проникнуть через гематоэнцефалический барьер, поэтому в крови практически не определяется даже при инсультах и диагностического значения не имеет.

10. Органная специфичность изоферментов ЛДГ. Физиологические значения общей активности лактатдегидрогеназы и ее изоферментов в плазме крови. Диагностическая значимость определения активности ЛДГ и ее изоферментов.

Лактатдегидрогеназа является гликолитическим ферментом и катализирует следующую реакцию: Лактат + НАД Лактатдегидрогеназа Пируват + НАДН

Молекула ЛДГ представляет собой тетрамер, состоящий из одного или двух типов субъединиц, обозначаемых как M (мышцы) и H (сердце). В сыворотке крови фермент существует в пяти молекулярных формах, различающихся по первичной структуре, кинетическим свойствам, электрофоретической подвижности (ЛДГ‑1 быстрее движется к аноду по сравнению с ЛДГ‑5, то есть более электрофоретичеки подвижна). Каждая форма имеет характерный полипептидный состав: ЛДГ‑1 состоит из 4 H‑субъединиц, ЛДГ‑2 - из 3 H‑субъединиц и 1 M‑субъединицы, ЛДГ‑3 представляет собой тетрамер из 2 H‑субъединиц и 2 M‑субъединиц, ЛДГ‑4 содержит 1 H‑субъединицу и 3 M‑субъединицы, ЛДГ‑5 состоит только из M‑субъединиц. По степени убывания общей каталитической активности энзима все органы и ткани располагаются в следующем порядке: почки, сердце, скелетные мышцы, поджелудочная железа, селезенка, печень, легкие, сыворотка крови.

От того, какой изофермент наиболее представлен, зависит преимущественный способ окисления глюкозы в ткани: аэробный (до CO2 и H2O) или анаэробный (до молочной кислоты). Подобное различие обусловлено разной степенью сродства изоферментов к пировиноградной кислоте. Изоферменты, содержащие в основном H‑субъединицы (ЛДГ‑1 и ЛДГ‑2), обладают низким сродством к пирувату и поэтому неспособны эффективно конкурировать за субстрат с пируватдегидрогеназным комплексом. В результате пируват подвергается окислительному декарбоксилированию и в виде ацетил‑КоA вступает в цикл Кребса.

Напротив, изоферменты, обладающие главным образом M‑субъединицами (ЛДГ‑4 и ЛДГ‑5), имеют более высокое сродство к пирувату и, как следствие, превращают его в молочную кислоту. Для каждой ткани установлены наиболее типичные изоферменты. Для миокарда и мозговой ткани основным изоэнзимом является ЛДГ‑1, для эритроцитов, тромбоцитов, почечной ткани - ЛДГ‑1 и ЛДГ‑2. В легких, селезенке, щитовидной и поджелудочной железах, надпочечниках, лимфоцитах преобладает ЛДГ‑3. ЛДГ‑4 находится во всех тканях с ЛДГ‑3, а также в гранулоцитах и мужских половых клетках, в последних дополнительно обнаруживается ЛДГ‑5. В скелетных мышцах изоферментная активность располагается в порядке убывания в ряду: ЛДГ‑5, ЛДГ‑4, ЛДГ‑3. Для печени наиболее характерен изофермент ЛДГ‑5, выявляется также ЛДГ‑4.

В норме основным источником активности ЛДГ в плазме крови являются разрушающиеся клетки крови. В сыворотке активность изоферментов распределяется следующим образом: ЛДГ‑2 > ЛДГ‑1 > ЛДГ‑3 > ЛДГ‑4 > ЛДГ‑5. При электрофорезе между фракциями ЛДГ‑3 и ЛДГ‑4 иногда обнаруживается дополнительная полоса изофермента ЛДГ‑X, данный изофермент локализован в тех же органах, что и ЛДГ‑5.

Все заболевания, протекающие с разрушением клеток, сопровождаются резким повышением активности ЛДГ в сыворотке крови. Нарастание общей активности фермента обнаруживается при таких заболеваниях как инфаркт миокарда, некротическое поражение почек, гепатит, панкреатит, воспаление и инфаркт легкого, опухоли различной локализации, повреждения, дистрофия и атрофия мышц, гемолитические анемии и физиологическая желтуха новорожденных, лимфогранулематоз, лейкозы. При инфаркте миокарда начало роста активности фермента в сыворотке крови отмечается на 8‑10 час от момента приступа, максимальное увеличение наступает к 24‑48 часу, нередко в 15‑20 раз превышая норму. Повышенная активность ЛДГ сохраняется до 10‑12 суток от начала заболевания. Степень нарастания активности фермента не всегда коррелирует с размерами поражения сердечной мышцы и для прогноза исхода заболевания может являться лишь ориентировочным фактором. У больных стенокардией активность фермента не изменяется, что позволяет применять тест для дифференциальной диагностики в пределах 2‑3 суток после сердечного приступа. Наличие органной специфичности ферментов позволяет применять исследование их активности с целью топической диагностики.

11. Физиологические значения общей активности креатининкиназы (КК) и ее изоферментов в плазме крови. Диагностическая значимость определения активности КК и ее изоферментов.

Креатинкиназа (КК) – это фермент, природный катализатор химических реакций, значительно увеличивающий скорость преобразования креатина и АТФ (аденозинтрифосфат) в высокоэнергетическое соединение креатинфосфат, который расходуется при интенсивных мышечных сокращениях. Данный фермент содержится в цитоплазме клеток различных мышц (сердечной, скелетных), а также в клетках мозга, легких, щитовидной железы.

Молекулу креатинкиназы можно поделить на две части, каждая из которых реализуется в виде отдельной субъединицы: М (мышца), и B (мозг). Данные субъединицы в организме человека могут объединяться вместе тремя способами, образуя, соответственно, три изоформы креатинкиназы: ММ, МВ и ВВ. Эти изоферменты отличаются своей локализацией в организме человека: креатинкиназа ММ расположена в миокарде и скелетных мышцах; креатинкиназа МВ локализована в большей степени в миокарде; креатинкиназа ВВ содержится в клетках плаценты, головного мозга, мочевыводящих путей, некоторых опухолях и других местах.

Нормальная концентрация фермента напрямую зависит от возраста и пола человека. В связи с активным развитием мускулатуры и нервной системы, у детей активность природного катализатора повышена по отношению к активности у взрослых. У женщин креатинкиназа ниже, чем у мужчин.

Уровень изофермента ММ оказывается повышен в большей степени в результате повреждений мышц, и редко при повреждениях сердца. Содержание КК МВ связано с повреждением миокарда. Значительное увеличение активности данной формы наблюдается при инфаркте миокарда. Ее уровень резко возрастает уже через два - четыре часа после первых симптомов. Поэтому концентрация данного фермента в крови активно используется для определения инфаркта миокарда. Однако, стоит отметить, что содержание КК МВ возвращается к нормальному уровню по прошествии трех-шести дней, что обуславливает низкую эффективность диагностики на поздних сроках. Концентрация КК ВВ увеличивается при онкологических заболеваниях. Снижение уровня изоферментов не несет никакой диагностической ценности, так как минимальный порог содержания КК у здорового человека равен нулю.

12. Липазы плазмы крови. Диагностическая значимость определения активности липазы. Липаза - синтезируемый человеческим организмом водорастворимый фермент, катализирующий гидролиз нерастворимых эстеров (липидных субстратов) и способствующий перевариванию, растворению и фракционированию нейтральных жиров. Вместе с желчью липаза стимулирует переваривание жиров, жирных кислот, жирорастворимых витаминов А, Е, D, К, трансформируя их в энергию и тепло. Назначением липопротеинлипазы является расщепление триглицеридов (липидов) в липопротеинах крови, благодаря чему обеспечивается доставка жирных кислот к тканям. Липазу вырабатывают: поджелудочная железа; печень; легкие; кишечник особые железы, расположенные в ротовой полости детей грудного возраста. В последнем случае синтезируется так называемая лингвальная липаза. Каждый из перечисленных ферментов способствует расщеплению определенной группы жиров.

С точки зрения значимости при постановке диагноза важную роль играет липаза, вырабатываемая поджелудочной железой. Повышение уровня фермента отмечается при: панкреатите, протекающем в острой форме, или при обострении хронического процесса; желчных коликах; травме поджелудочной железы; наличии в поджелудочной железе новообразований; хронических патологиях желчного пузыря; образовании кисты или псевдокисты в поджелудочной железе; закупорке панкреатического протока рубцом или камнем; внутрипеченочном холестазе; острой кишечной непроходимости; инфаркте кишечника; перитоните; прободении язвы желудка; перфорации внутреннего (полого) органа; острой или хронической почечной патологии; эпидемическом паротите, при котором происходит поражение поджелудочной железы; нарушениях обменных процессов, имеющих место при сахарном диабете, ожирении или подагре; циррозе печени; длительном приеме медицинских препаратов – в частности, барбитуратов, анальгетиков наркотического ряда, гепарина, индометацина; операции по трансплантации органов. В редких случаях процесс активизации липазы оказывается связанным с некоторыми травмами – например, переломами трубчатых костей. Но в этом случае колебания уровня фермента в крови не могут считаться специфическим показателем наличия физического повреждения. По этой причине анализы на липазу не учитываются при диагностике травм различного происхождения.

Определение уровня липазы в сыворотке обретает особую важность при любом поражении поджелудочной железы. В этом случае анализ крови на содержание данного энзима вместе с анализом на амилазу (фермент, способствующий расщеплению крахмала до олигосахаридов) с высокой степенью достоверности указывает на наличие патологического процесса в тканях поджелудочной железы: оба показателя оказываются выше нормы). В процессе нормализации состояния больного названные ферменты возвращаются к адекватным показателям не одновременно: как правило, уровень липазы остается на высоком уровне дольше, чем уровень амилазы.

Высокий уровень липазы сохраняется от 3 до 7 суток с начала развития воспаления. Тенденция к снижению фиксируется только спустя 7-14 дней.

Низкий уровень липазы фиксируется: при наличии злокачественного новообразования в любой части организма, кроме самой поджелудочной железы; вследствие снижения функции поджелудочной железы; при кистозном фиброзе (муковисцидозе) – генетическом заболевании с тяжелым течением, возникающем в результате патологического поражения желез внешней секреции (ЖКТ, легких). после оперативного вмешательства по удалению поджелудочной железы; при избыточном содержании триглицеридов в крови, возникающем по причине неправильного питания с обилием жирных продуктов в рационе или вследствие наследственной гиперлипидемии. В некоторых случаях снижение уровня липазы является маркером перехода панкреатита в хроническую форму.

HHHH HHHM HHMM HMMM MMMM

ЛДГ1,2

ЛДГ4,5

Изоферменты, их природа, биологическая роль, строение ЛДГ.

Изоферменты - это группа родственных ферментов, катализирующих одну и ту же реакцию. Они происходят из одного предшественника за счет дупликациии гена с последующей мутацией образуемых аллелей. Они отличаются между собой:

1) скорстью катализа;

3) условиями протекания реакции;

4) чувствительностью к регуляторам, факторам среды. (Более или менее устойчивы к ингибиторам);

5) сродством к субстрату;

6) особенностями структуры молекулы, ее ИЭТ, Mr, размерами и зарядом.

Изоферменты имеют адаптивное значение, т. е. придают специфику метаболизма.

Изоферменты обеспечивают межорганную связь, например, в процессе мышечной деятельности.

В миокарде и печени существуют различные изоферменты ЛДГ, которые обеспечивают метаболизм лактата:

в печени: ПВК -----> лактат

в сердце: лактат ------> ПВК

ЛДГ - олигомерный фермент, состоящий из 4-х субъединиц 2 типов.

H (heart) и M (muscle).

Существует 5 изоферментных форм:

H4 H3M H2M2 HM3 M4

ЛДГ1, ЛДГ2, ЛДГ3, ЛДГ4, ЛДГ5.

Поскольку H-протомеры несут более выраженный отрицательный заряд, то изофермент H4 (ЛДГ1) будет мигрировать при электрофорезе с наибольшей скоростью к аноду.

С наименьшей скоростью к аноду будет двигаться М4.

Остальные изоферменты занимают промежуточное положение.

Изоферменты ЛДГ локализованы в различных тканях:

ЛДГ1,2 ----> мозг, аэробные ткани (миокард).

ЛДГ3 ----> лейкозные клетки.

ЛДГ4,5 ----> анэробные ткани: мышечная, скелетная.

Изоферменты появляются на различных этапах онтогенеза и реализуют программу индивидуального развития.

Изоферментный профиль меняется в процессе развития.

При патологиях имеется существенный изоферментный сдвиг.

Биохимия - это наука, изучающая качественный и количественный состав, а также пути, способы, закономерности, биологическую и физиологическую роль превращения вещества, энергии и информации в живом организме.

Формирование биологической химии как самостоятельной дисциплины в системе биологических наук было длительным и сложным процессом. Современная биохимия сформировалась на рубеже ХIХ и ХХ вв. в недрах органической химии и физиологии, поэтому в ХIХ в. она называлась физиологической химией. Термин биохимия был предложен в 1858 году австрийским врачом и химиком Винцентом Клетцинским.

История биохимии отражает сложный путь познания человеком окружающего органического мира, истоки которого уходят во времена античности. В те времена гениальные пророческие идеи причудливо переплетались с наивными представлениям об окружающем мире. Так, например, Аристотель полагал, что живые существа образуются из сочетания пассивного, не имеющей жизни, начала - «материи» с активным началом - «формой», которая формирует тело и поддерживает в нем жизнь.


В последующем неоплатоники развивая эти идеи сформулировали понятие о «жизненной силе», «животворящем духе» и т.д., которые в различных модификациях существовали и в средние века. В VII – X веках в Европе с развитием алхимии стал накапливаться материал о составе сложных органических соединений.

Эпоха Возрождения характеризуется динамическим восприятием окружающего мира, которое превратило науку из ритуально-магической в открытую. Наука рассматривала человеческое тело как сложную механическую машину. Наш выдающийся современник, английский философ и историк науки Дж. Бернал так характеризует ту эпоху: «... врачи свободно общались с мастерами-художниками, математиками, астрономами и инженерами. По сути дела, многие из них занимались некоторыми из этих профессий. Так, например, Коперник получил образование и практиковал как врач...».

Именно это привело науку к новой ступени - живое стали оценивать химическими категориями. В XVI - XVII веках получила развитие ятрохимия (врачебная химия), важнейшим представителем которой был Парацельс (1493-1541), считавший, что в основе всех заболеваний лежат нарушения хода химических процессов в организме, поэтому лечить их надо тоже химическими веществами. Ятрохимия много дала практической медицине и способствовала ее сближению с химией.

Середина ХVII - конец ХVIII вв является эмпирическим периодом развития органической химии которая по определению великого шведского химика Й. Берцелиуса была химией «растительных и животных веществ». За это время произошло накопление огромного фактического материала, но еще не возникло теоретических, обобщающих представлений. Практические потребности человеческой деятельности (получение из природного сырья лекарств, масел, смол, красителей и т.д.) явились основной причиной, побуждающей к изучению органических соединений.

Совершенствование экспериментальных методов способствовало выделению индивидуальных органических соединений из растений (щавелевая, яблочная, лимонная и др. кислоты) и продуктов жизнедеятельности животных организмов (мочевина, мочевая и гиппуровая кислоты).

Следующий период - аналитический (конец ХVIII - середина ХIХ вв. - ознаменован исследованиями по установлению состава веществ, в результате которых стало очевидно, что все органические соединения содержат углерод. Вот лишь некоторые достижения этого периода:

В 1828 г. Ф. Вёлер впервые синтезировал мочевину, открыв тем самым эпоху органического синтеза.

В 1839 г Ю. Либих установил, что в состав пищи входят белки, жиры и углеводы.

В 1845 г. Г. Кольбе синтезировал уксусную кислоту

В 1854 г М. Бертло синтезировал жиры.

В 1861 г А.М. Бутлеров синтезировал углеводы.

Подводя итоги развития биохимии в ХIХ в. отметим, что основными факторами ее формирования было развитие химии важнейших природных соединений - липидов, углеводов и особенно белков, первые успехи энзимологии, разработка основных положений о многоступенчатости обмена веществ и роли ферментов в этих процессах. Биологическая химия того времени ставила своей главной целью изучение методами химии не суммарных процессов обмена веществ, а превращение в организме каждого отдельного соединения и разработка представлений о всех деталях обменных процессов в совокупности.

Наиболее интенсивно биохимия стала развивать в ХХ веке и особенно в последние десятилетия. В первой половине ХХ в. были сделаны важнейшие открытия, которые позволили построить общую схему обмена веществ, установить природу ферментов и исследовать их важнейшие свойства, значительно расширить знания об основных биологически активных соединениях. В 40-50-е годы интенсивно развивались и усовершенствовались методы биохимических исследований определившие в последующие десятилетия формирование отдельных направлений биохимии ставших самостоятельными науками - биоорганической химии, молекулярной биологии, молекулярной генетики, биотехнологии и др.

В последующем, при рассмотрении отдельных разделов биохимии, мы будем касаться их исторических аспектов, сейчас же кратко рассмотрим основные исторические этапы развития отечественной биологической химии.

Ферменты: определение понятия, химическая природа, физико-химические свойства и биологическая роль ферментов.

Ферменты - это белки, которые действуют как катализаторы в биологических системах.

Химическая природа: белки.

Физико-химические свойства:

1) являются амфотерными соединениями;

2) вступают в те же качественные реакции, что и белки (биуретовую, ксантопротеиновую, фолина и др.);

3) подобно белкам растворяются в воде с образованием коллоидных растворов;

4) обладают электрофоретической активностью;

5) гидролизуются до аминокислот;

6) склонны к денатурации под влиянием тех же факторов: температуры, изменениях рН, действием солей тяжелых металлов, действием физических факторов (ультразвук, ионизирующее излучение и др.);

7) имеют несколько уровней организации макромолекул, что подтверждено данными рентгеноструктурного анализа, ЯМР, ЭПР

Биологическая роль: Ферменты катализируют контролируемое протекание всех метаболических процессов в организме.

Изоферменты. Строение, биологическая роль, диагностическое значение определения, изменение в онтогенезе и при патологии органа, диагностическое значение.

Изоферменты – это множественные формы одного фермента, катализирующие одну и ту же реакцию, но отличающие по физическим и химическим свойствам.

Строение: Четвертичная структура, образованная четным количеством субъединиц (2, 4, 6 и т.д.). Изоформы фермента образуются в результате различных комбинаций субъединиц.

Биологическая роль: Существование изоформ повышает адаптационную возможность тканей, органов, организма в целом к меняющимся условиям.

Диагностическое значение определения: По изменению изоферментного состава оценивают метаболическое состояние органов и тканей.

Изменение в онтогенезе: На примере ЛДГ (окисляет лактат до ПВК). В процессе индивидуального развития организма в тканях происходит изменение содержания кислорода и изоформ ЛДГ. У зародыша преобладают ЛДГ 4 , ЛДГ 5 . После рождения в некоторых тканях происходит увеличение содержания ЛДГ 1 , ЛДГ 2.

Изменения при патологии органа: На примере ЛДГ. ЛДГ 1,2 работают в миокарде. Если в миокард не будет поступать кислород, там увеличится количество анаэробных субъединиц – ЛДГ 4,5 , что свидетельствует о патологии органа.

Диагностическое значение:

ЛДГ – при увеличении активности ЛДГ в плазме крови можно предположить повреждение одной из тканей организма (сердце, мышцы, печень). (В норме 170-520 ЕД/л)

КК – (катализируют превращение кретина в креатинфосфат); определяют активность КК в плазме крови. В норме – 90 МЕ/л. Повышение ММ – травма мышц, ВВ – в крови не определяется даже при инсультах, т.к. не может проникнуть в кровь.

В основе многих патологических и предпатологических состояний организма лежат нарушения функционирования ферментных систем. Многие ферменты локализуются внутри клеток, а поэтому в сыворотке (плазме) крови их активность низка или вообще отсутствует. Именно поэтому анализируя внеклеточные жидкости (кровь), по активности определенных ферментов можно выявить изменения, происходящие внутри клеток различных органов и тканей организма. другие ферменты постоянно содержатся в крови, в известных количествах и имеют определенную функцию (например, ферменты системы свертывания крови).

Активность ферментов в сыворотке крови отражает сбалансированность скорости синтеза ферментов внутри клеток и выхода их из клеток. Увеличение активности ферментов крови может быть результатом ускорения процессов синтеза, понижения скорости выведения, повышения проницаемости клеточных мембран, действия активаторов, некроза клеток. Уменьшение активности ферментов вызывается повышением скорости выведения фермента, действием ингибиторов, угнетением синтеза.

Повышение активности в крови того или иного фермента является весьма ранним диагностическим тестом. Дополнительное определение изоферментного спектра позволяет уточнить локализацию патологического процесса, так как каждый орган имеет свой определенный изоферментный спектр.

В клинической биохимии большое значение имеет показатель активности аспарататаминотраисферазы и аланинаминотрансферазы. Эти трансаминазы содержатся в митохондриях и в растворимой фракции цитоплазмы клеток. Роль трансаминаз сводится к передаче аминогрупп аминокислот на кетокислоту. Коферментом трансаминаз служит пиридоксальфосфат, производное витамина В6. В крови животных активность обоих ферментов очень мала, по сравнению с их активностью в других тканях. Однако при патологиях, сопровождающихся деструкцией клеток, трансаминазы выходят через мембраны клеток в кровь, где их активность значительно увеличивается по сравнению с нормой. Несмотря на отсутствие строгой органной специфичности этих ферментов, повышение их активности наблюдают при гепатитах, мышечных дистрофиях, травмах, при чрезмерных физических нагрузках на организм, в частности, у спортивных лошадей.

Лактатдегидрогеназа(ЛдГ), гликолитический фермент, катализирующий обратимую реакцию восстановления пировиноградной кислоты в молочную. ЛдГ состоит из четырех субъединиц и включает пять изоферментов. Причем в мышечной ткани преобладает изофермент ЛдГ5, в сердечной мышце ЛдГ1 и ЛдГ2. При остром инфаркте миокарда у больных в сыворотке крови повышается активность изоферментов ЛДГ1 и ЛдГ2. При паренхиматозном гепатите в сыворотке крови значительно возрастает активность изоферментов ЛдГ4 и ЛдГ5, тогда как активность ЛдГ1 и ЛдГ2 снижается.Активность ЛдГ в цельной крови существенно выше активности фермента в плазме крови. Поэтому даже минимальный гемолиз крови значительно изменяет активность фермента в плазме, что следует учитывать в лабораторной работе.

Креатинфосфокиназа(КФК), важную роль играет в энергетическом обмене. Креатинфосфокиназа необходима для ресинтеза АТФ за счет трансфосфорилирования АдФ с креатинфосфатом. Креатинфосфат относится к богатым энергией фосфатным соединениям,которые обеспечивают сокращение мышечного волокна, его расслабление, транспорт метаболитов в мышечную ткань.

Креатин-Ф + АдФ КФК > Креатин + АТФ.

Креатинфосфокиназа состоит из двух субъединиц - М и В, образующих три изофермента: ММ (мышечныий тип), МВ (сердечный тип), ВВ (мозговой тип).

Анализ тканей свидетельствует, что значительная активность КФК имеет место в скелетной мышце,миокарде, мозге. Сердечная мьшца содержит в основном изофермент ММ и МВ.Повышение активности изофермента МВ в сыворотке крови пациента свидетельствует о поражении сердечной мышцы. Определение изоферментов КФК является лучшим методом диагностики при наследственной мышечной дистрофии у цыплят, при недостатке селена у крупного рогатого скота, при паралитической миоглобинурии у лошадей.

Щелочная фосфатаза (ЩФ), - гидролитический фермент, синтезируемый в основном в печени выделяется из организма в составе желчи. Его оптимум активности находится при рН = 8-9. Это неспецифический фермент, катализирующий гидролиз многих фосфорных эфиров и присутствующий в плазме в форме изоферментов. Основной источник щелочной фосфатазы у молодых растущих животных - костная ткань. Активность щелочной фосфатазы значительно повышается при болезнях печени и костей, в частности, при остеомаляциях. Основная роль щелочной фосфатазы, вероятно, связана с отложением фосфатов кальция в костной ткани. Установлено повышение активности щелочной фосфатазы сыворотки крови при новообразованиях кости.

Холинэстераза - фермент, участвующий в процессе передачи нервного импульса, гидролизу ацетилхолин на ацетат и холин. Холинэстераза сыворотки крови включает два вида холинэстераз организма, основной субстрат которых - ацетилхолин. Ацетилхолинэстераза (АХЭ), гидролизирующая ацетилхолин в синапсах, называется истинной. Она присутствует в печени, эритроцитах и лишь малое ее количество локализовано в плазме. Холинэстераза плазмы крови является псевдохолинэстеразой, она гидролизует бутирилхолин в 4 раза быстрее, чем ацетилхолин. Этот фермент находится также в печени, поджелудочной железе, слизистой оболочке кишечника. Синтез АХЭ сыворотки крови происходит в печени, а поэтому при патологии этого органа наблюдается снижение активности фермента.

Необратимыми ингибиторами АХЭ являются токсические фосфорорганические соединения (ФОС). Так,ФОС инсектициды (хлорофос, фосфамид, карбофос, октаметил) избирательно связывают активные центры молекулы АХЭ и тем самым блокируют ее активность. Вследствие высокой липотропности ФОС способны проникать в организм животного через неповрежденную кожу и слизистые оболочки. При отравлении ФОС отмечают беспокойство животного, чувство страха, возбуждение, судороги, которые развиваются на фоне приступов удушья и кашля из-за спазма бронхов. Характерными при этом являются изменения со стороны глаз: резко суживается зрачок, начинается слезотечение, нарушается аккомодация. Чаще всего непосредственной причиной гибели животного, отравленного ФОС является паралич дыхательного центра.

Амилаза продуцируется слюнными железами и в больших количествах поджелудочной железой. Амилаза обладает специфическим действием на с-1,4-глюкозидные связи полисахаридов. Повышение активности амилазы сыворотки крови свидетельствует о развитии острого панкреатита. Умеренное повышение активности фермента отмечается при воспалении слюнных желез.