Связь лингвистики и информатики. Компьютерная лингвистика как прикладная лингвистическая дисциплина

На филфаке Высшей школы экономики запускается новая магистерская программа, посвященная компьютерной лингвистике: тут ждут абитуриентов с гуманитарным и математическим базовым образованием и всех, кому интересно решать задачи в одной из самых перспективных отраслей науки. Ее руководитель Анастасия Бонч-Осмоловская рассказала «Теориям и практикам», что такое компьютерная лингвистика, почему роботы не заменят человека и чему будут учить в магистратуре ВШЭ по компьютерной лингвистике.

Эта программа - чуть ли не единственная такого рода в России. А вы где сами учились?

Я училась в МГУ на отделении теоретической и прикладной лингвистики филологического факультета. Попала туда не сразу, сначала поступила на русское отделение, но потом всерьез увлеклась лингвистикой, и меня привлекла атмосфера, которая остается на кафедре сих пор. Самое главное там - хороший контакт между преподавателями и студентами и их взаимная заинтересованность.

Когда у меня родились дети и надо было зарабатывать на жизнь, я пошла в сферу коммерческой лингвистики. В 2005 году было не очень понятно, что представляет из себя эта область деятельности как таковая. Я работала в разных лингвистических фирмах: начинала с небольшой фирмы при сайте Public.ru - это такая библиотека СМИ, там я начала заниматься лингвистическими технологиями. Потом год работала в Роснанотехе, где была идея сделать аналитических портал, чтобы данные на нем автоматически структурировались. Потом я руководила лингвистическим отделом в компании «Авикомп» - это уже серьезное производство в области компьютерной лингвистики и семантических технологий. Параллельно я вела курс по компьютерной лингвистике в МГУ и старалась сделать его более современным.

Два ресурса для лингвиста: - сайт, созданный лингвистами для научных и прикладных исследований, связанных с русским языком. Это модель русского языка, представленная с помощью огромного массива текстов разных жанров и периодов. Тексты снабжены лингвистической разметкой, с помощью которой можно получать информацию о частотности тех или иных языковых явлений. Ворднет - огромная лексическая база английского языка, главная идея Ворднета - связать в одну большую сеть не слова, но их смыслы. Ворднет можно скачивать и использовать для собственных проектов.

А чем занимается компьютерная лингвистика?

Это максимально междисциплинарная область. Тут самое главное понимать, что творится в электронном мире и кто тебе поможет сделать конкретные вещи.

Нас окружает очень большое количество дигитальной информации, существует множество бизнес-проектов, успех которых зависит от обработки информации, эти проекты могут относиться к сфере маркетинга, политики, экономики и чего угодно. И очень важно уметь обращаться с этой информацией эффективно - главное не только быстрота обработки информации, но и легкость, с которой ты можешь, отсеяв шум, достать те данные, которые тебе нужны, и создать из них цельную картину.

Раньше с компьютерной лингвистикой были связаны какие-то глобальные идеи, например: люди думали, что машинный перевод заменит человеческий, вместо людей будут работать роботы. Но сейчас это кажется утопией, и машинный перевод используется в поисковых системах для быстрого поиска на незнакомом языке. То есть сейчас лингвистика редко занимается абстрактными задачами - в основном какими-то маленькими штучками, которые можно вставить в большой продукт и на этом заработать.

Одна из больших задач современной лингвистики - семантический web, когда поиск происходит не просто по совпадению слов, а по смыслу, а все сайты так или иначе размечены по семантике. Это может быть полезно, например, для полицейских или медицинских отчетов, которые пишутся каждый день. Анализ внутренних связей дает много нужной информации, а читать и считать это вручную невероятно долго.

В двух словах, у нас есть тысяча текстов, надо разложить их по кучкам, представить каждый текст в виде структуры и получить таблицу, с которой уже можно работать. Это называется обработка неструктурированной информации. С другой стороны, компьютерная лингвистика занимается, например, созданием искусственных текстов. Есть такая компания, которая придумала механизм генерации текстов на темы, на которые человеку писать скучно: изменение цен на недвижимость, прогноз погоды, отчет о футбольных матчах. Заказывать человеку эти тексты гораздо дороже, притом компьютерные тексты на такие темы написаны связным человеческим языком.

Разработками в области поиска неструктурированной информации в России активно занимается «Яндекс», «Лаборатория Касперского» нанимает исследовательские группы, которые изучают машинное обучение. Кто-то на рынке пытается придумать что-то новое в области компьютерной лингвистики?

**Книги по компьютерной лингвистике:**

Daniel Jurafsky, Speech and Language Processing

Кристофер Маннинг, Прабхакар Рагхаван, Хайнрих Шютце, «Введение в информационный поиск»

Яков Тестелец, «Введение в общий синтаксис»

Большинство лингвистических разработок является собственностью больших компаний, практически ничего нельзя найти в открытом доступе. Это тормозит развитие отрасли, у нас нет свободного лингвистического рынка, коробочных решений.

Кроме того, не хватает полноценных информационных ресурсов. Есть такой проект, как Национальный корпус русского языка . Это один из лучших национальных корпусов в мире, который стремительно развивается и открывает невероятные возможности по научным и прикладным исследованиям. Разница примерно как в биологии - до ДНК-исследований и после.

Но многие ресурсы не существуют на русском языке. Так, нет аналога такому замечательному англоязычному ресурсу, как Framenet - это такая концептуальная сеть, где формально представлены все возможные связи какого-то конкретного слова с другими словами. Например, есть слово «летать» - кто может летать, куда, с каким предлогом употребляется это слово, с какими словами оно сочетается и так далее. Этот ресурс помогает связать язык с реальной жизнью, то есть проследить, как ведет себя конкретное слово на уровне морфологии и синтаксиса. Это очень полезно.

В компании Avicomp сейчас разрабатывается плагин для поиска близких по содержанию статей. То есть если вас заинтересовала какая-то статья, вы можете оперативно посмотреть историю сюжета: когда тема возникла, что писалось и когда был пик интереса к этой проблеме. Например, с помощью этого плагина можно будет, оттолкнувшись от статьи, посвященной событиям в Сирии, очень быстро увидеть, как в течение последнего года развивались там события.

Как будет построен процесс обучения в магистратуре?

Обучение в Вышке организовано по отдельным модулям - как в западных университетах. Студенты будут разделены на маленькие команды, мини-стартапы - то есть на выходе мы должны получить несколько готовых проектов. Мы хотим получить реальные продукты, которые потом откроем людям и оставим в открытом доступе.

Кроме непосредственных руководителей проектов студентов, мы хотим найти им кураторов из числа их потенциальных работодателей - из того же «Яндекса», например, которые тоже будут играть в эту игру и давать студентам какие-то советы.

Я надеюсь, что в магистратуру придут люди из самых разных областей: программисты, лингвисты, социологи, маркетологи. У нас будет несколько адаптационных курсов по лингвистике, математике и программированию. Потом у нас будет два серьезных курса по лингвистике, и они будут связаны с самыми актуальными лингвистическими теориями, мы хотим, чтобы наши выпускники были в состоянии читать и понимать современные лингвистические статьи. То же самое и с математикой. У нас будет курс, который будет называться «Математические основания компьютерной лингвистики», где будут излагаться те разделы математики, на которых зиждется современная компьютерная лингвистика.

Для того чтобы поступить в магистратуру, нужно сдать вступительный экзамен по языку и пройти конкурс портфолио.

Кроме основных курсов будут линейки предметов по выбору Мы запланировали несколько циклов - два из них ориентированы на более глубокое изучение отдельных тем, к которым относятся, например, машинный перевод и корпусная лингвистика, и, а один, наоборот, связан со смежными областями: такими как, социальные сети, машинное обучение или Digital Humanities - курс, который как мы надеемся, будем прочитан на английском языке.

лингвистика статистический языкознание программный

История развития компьютерной лингвистики

Процесс становления и формирования современной лингвистики как науки о естественном языке представляет собой длительное историческое развитие лингвистического знания. В основе лингвистического знания лежат элементы, формирование которых происходило в процессе деятельности, неразрывно связанной с освоением структуры устной речи, появлением, дальнейшим развитием и совершенствованием письма, обучением письму, а также толкованием и расшифровкой текстов.

Естественный язык как объект лингвистики занимает центральное место в этой науки. В процессе развития языка менялись и представления о нем. Если раньше не придавалось особого значения внутренней организации языка, и он рассматривался, прежде всего, в контексте взаимосвязи с внешним миром, то, начиная с конца XIX - начала XX вв., особая роль отводится внутреннему формальному строению языка. Именно в этот период известным швейцарским лингвистом Фердинандом де Соссюром были разработаны основы таких наук, как семиология и структурная лингвистика, и подробно изложены в его книге «Курс общей лингвистики» (1916).

Ученому принадлежит идея рассмотрения языка как единого механизма, целостной системы знаков, что в свою очередь дает возможность описать язык математически. Соссюр первым предложил структурный подход к языку, а именно: описание языка посредством изучения соотношений между его единицами. Под единицами, или «знаками» он понимал слово, которое объединяет в себе и смысл, и звучание. В основе концепции, предложенной швейцарским ученым, лежит теория языка как системы знаков, состоящей из трех частей: языка (от фр. langue), речи (от фр. parole) и речевой деятельности (от фр. langage).

Сам ученый определял создаваемую им науку семиологию как «науку, изучающую жизнь знаков в рамках жизни общества». Поскольку язык - это знаковая система, то в поиске ответа на вопрос о том, какое место лингвистика занимает среди других наук, Соссюр утверждал, что лингвистика - это часть семиологии. Принято считать, что именно швейцарский филолог заложил теоретический фундамент нового направления в лингвистике, став основоположником, «отцом» современного языкознания.

Концепция, выдвинутая Ф. де Соссюром, получила дальнейшее развитие в работах многих выдающихся ученых: в Дании - Л. Ельмслев, в Чехии - Н. Трубецкой, в США - Л. Блумфилд, 3. Харрис, Н. Хомский. Что касается нашей страны, то здесь структурная лингвистика начала свое развитие примерно в тот же период времени, что и на Западе, - на рубеже XIX-XX вв. - в трудах Ф. Фортунатова и И. Бодуэн де Куртенэ. Следует отметить, что И. Бодуэн де Куртенэ тесно сотрудничал с Ф. де Соссюром. Если Соссюр заложил теоретический фундамент структурной лингвистики, то Бодуэн де Куртенэ может считаться человеком, заложившим основы практического применения методов, предложенных швейцарским ученым. Именно он определил лингвистику как науку, использующую статистические методы и функциональные зависимости, и отделил ее от филологии. Первым опытом применения математических методов в языкознании стала фонология - наука о структуре звуков языка.

Следует отметить, что постулаты, выдвинутые Ф. де Соссюром, смогли найти отражение в проблемах лингвистики актуальных в середине XX века. Именно в это период и намечается явная тенденция к математизации науки о языке. Практически во всех крупных странах начинается бурное развитие науки и вычислительной техники, что в свою очередь потребовало все более новых лингвистических основ. Результатом всего этого стало быстрое сближение точных и гуманитарных наук, а также активное взаимодействие математики и лингвистики нашло практическое применение при решении актуальных научных проблем.

В 50-е годы XX века на стыке таких наук, как математика, лингвистика, информатика и искусственный интеллект, возникло новое направление науки - компьютерная лингвистика (известной также под названием машинная лингвистика или автоматическая обработка текстов на естественном языке). Основные этапы развития этого направления происходили на фоне эволюции методов искусственного интеллекта. Мощным толчком к развитию компьютерной лингвистики послужило создание первых ЭВМ. Однако с появлением в 60-х годах нового поколения компьютеров и языков программирования начинается принципиально новый этап в развитии этой науки. Также следует отметить, что истоки компьютерной лингвистики восходят к трудам известного американского ученого-лингвиста Н. Хомского в области формализации структуры языка. Результаты его исследований, полученные на стыке лингвистики и математики, сформировали основу для развития теории формальных языков и грамматик (порождающих, или генеративных, грамматик), которая широко применяется для описания как естественных, так и искусственных языков, в частности языков программирования. Если говорить точнее, то эта теория является вполне математической дисциплиной. Ее можно считать одной из первых в таком направлении прикладной лингвистики, как математическая лингвистика.

Первые эксперименты и первые разработки в компьютерной лингвистике относятся к созданию систем машинного перевода, а также систем, моделирующих языковые способности человека. В конце 80-х годов с появлением и активным развитием сети Интернет произошел бурной рост объемов текстовой информации, доступной в электронном виде. Это привело к тому, что технологии информационного поиска перешли на качественно новую ступень своего развития. Возникла необходимость автоматической обработки текстов на естественном языке, появились совершенно новые задачи и технологии. Ученые столкнулись с такой проблемой, как быстрая обработка огромного потока неструктурированных данных. С целью найти решение для данной проблемы большое значение стало уделяться разработке и применению статистических методов в области автоматической обработки текстов. Именно с их помощью оказалось возможным решение таких задач, как разбиение текстов на кластеры, объединенные общей тематикой, выделение в тексте определенных фрагментов и т.д. Кроме этого, применение методов математической статистики и машинного обучения позволило решить задачи распознавания речи и создания поисковых систем.

Ученые не останавливались на достигнутых результатах: они продолжали ставить перед собой все новые цели и задачи, разрабатывать новые приемы и методы исследования. Все это привело к тому, что языкознание стало выступать в качестве прикладной науки, объединяющей в себе ряд других наук, ведущая роль среди которых принадлежала математике с ее многообразием количественных методов и возможностью их применять для более глубокого осмысления изучаемых явлений. Так начала свое формирование и развитие математическая лингвистика. На данный момент это достаточно «молодая» наука (существует около пятидесяти лет), однако, несмотря на свой весьма «юный возраст», она представляет собой уже сложившуюся область научных знаний с множеством успешных достижений.

Содержание статьи

КОМПЬЮТЕРНАЯ ЛИНГВИСТИКА, направление в прикладной лингвистике, ориентированное на использование компьютерных инструментов – программ, компьютерных технологий организации и обработки данных – для моделирования функционирования языка в тех или иных условиях, ситуациях, проблемных сферах и т.д., а также вся сфера применения компьютерных моделей языка в лингвистике и смежных дисциплинах. Собственно, только в последнем случае и идет речь о прикладной лингвистике в строгом смысле, поскольку компьютерное моделирование языка может рассматриваться и как сфера приложения информатики и теории программирования к решению задач науки о языке. На практике, однако, к компьютерной лингвистике относят практически все, что связано с использованием компьютеров в языкознании.

Как особое научное направление компьютерная лингвистика оформилась в 1960-е годы. Русский термин «компьютерная лингвистика» является калькой с английского computational linguistics. Поскольку прилагательное computational по-русски может переводиться и как «вычислительный», в литературе встречается также термин «вычислительная лингвистика», однако в отечественной науке он приобретает более узкое значение, приближающееся к понятию «квантитативной лингвистики». Поток публикаций в этой области очень велик. Кроме тематических сборников, в США ежеквартально выходит журнал «Компьютерная лингвистика». Большую организационную и научную работу проводит Ассоциация по компьютерной лингвистике, которая имеет региональные структуры (в частности, европейское отделение). Каждые два года проходят международные конференции по компьютерной лингвистике – COLING. Соответствующая проблематика обычно бывает широко представлена также на различных конференциях по искусственному интеллекту.

Инструментарий компьютерной лингвистики.

Компьютерная лингвистика как особая прикладная дисциплина выделяется прежде всего по инструменту – т.е. по использованию компьютерных средств обработки языковых данных. Поскольку компьютерные программы, моделирующие те или иные аспекты функционирования языка, могут использовать самые различные средства программирования, то об общем понятийном аппарате компьютерной лингвистики говорить вроде бы не приходится. Однако это не так. Существуют общие принципы компьютерного моделирования мышления, которые так или иначе реализуются в любой компьютерной модели. В их основе лежит теория знаний, первоначально разрабатывавшаяся в области искусственного интеллекта, а в дальнейшем ставшая одним из разделов когнитивной науки. Важнейшими понятийными категориями компьютерная лингвистика являются такие структуры знаний, как «фреймы» (понятийные, или, как принято говорить, концептуальные структуры для декларативного представления знаний о типизированной тематически единой ситуации), «сценарии» (концептуальные структуры для процедурного представления знаний о стереотипной ситуации или стереотипном поведении), «планы» (структуры знаний, фиксирующие представления о возможных действиях, ведущих к достижению определенной цели). Тесно связано с категорией фрейма понятие «сцена». Категория сцены преимущественно используется в литературе по компьютерной лингвистике как обозначение концептуальной структуры для декларативного представления актуализованных в речевом акте и выделенных языковыми средствами (лексемами, синтаксическими конструкциями, грамматическими категориями и пр.) ситуаций и их частей.

Определенным образом организованный набор структур знаний формирует «модель мира» когнитивной системы и ее компьютерной модели. В системах искусственного интеллекта модель мира образует особый блок, в который в зависимости от выбранной архитектуры могут входить общие знания о мире (в виде простых пропозиций типа «зимой холодно» или в виде правил продукций «если на улице идет дождь, то надо надеть плащ или взять зонтик»), некоторые специфические факты («Самая высокая вершина в мире – Эверест»), а также ценности и их иерархии, иногда выделяемые в особый «аксиологический блок».

Большинство элементов понятий инструментария компьютерной лингвистики омонимично: они одновременно обозначают некоторые реальные сущности когнитивной системы человека и способы представления этих сущностей, используемые при их теоретическом описании и моделировании. Иными словами, элементы понятийного аппарата компьютерной лингвистики имеют онтологический и инструментальный аспекты. Например, в онтологическом аспекте разделение декларативных и процедурных знаний соответствует различным типам знаний, имеющимся у человека – так называемым знаниям ЧТО (декларативным; таково, например, знание почтового адреса какого-либо NN), с одной стороны, и знаниям КАК (процедурным; таково, например, знание, позволяющее найти квартиру этого NN, даже не зная ее формального адреса) – с другой. В инструментальном аспекте знание может быть воплощено в совокупности дескрипций (описаний), в наборе данных, с одной стороны, и в алгоритме, инструкции, которую выполняет компьютерная или какая-либо другая модель когнитивной системы, с другой.

Направления компьютерной лингвистики.

Сфера КЛ весьма разнообразна и включает такие области, как компьютерное моделирование общения, моделирование структуры сюжета, гипертекстовые технологии представления текста, машинный перевод, компьютерная лексикография. В узком смысле проблематика КЛ часто связывается с междисциплинарным прикладным направлением с несколько неудачным названием «обработка естественного языка» (перевод английского термина Natural Language Processing). Оно возникло в конце 1960-х годов и развивалось в рамках научно-технологической дисциплины «искусственный интеллект». По своей внутренней форме словосочетание «обработка естественного языка» охватывает все области, в которых компьютеры используются для обработки языковых данных. Между тем в практике закрепилось более узкое понимание этого термина – разработка методов, технологий и конкретных систем, обеспечивающих общение человека с ЭВМ на естественном или ограниченном естественном языке.

Бурное развитие направления «обработки естественного языка» приходится на 1970-е годы, что было связано с неожиданным экспоненциальным ростом количества конечных пользователей ЭВМ. Поскольку обучение языкам и технологии программирования всех пользователей невозможно, возникла проблема организации взаимодействия с компьютерными программами. Решение этой проблемы коммуникации шло по двум основным путям. В первом случае предпринимались попытки адаптации языков программирования и операционных систем к конечному пользователю. В результате появились языки высокого уровня типа Visual Basic, а также удобные операционные системы, построенные в концептуальном пространстве привычных человеку метафор – ПИСЬМЕННЫЙ СТОЛ, БИБЛИОТЕКА. Второй путь – разработка систем, которые позволяли бы взаимодействовать с ЭВМ в конкретной проблемной области на естественном языке или каком-то его ограниченном варианте.

Архитектура систем обработки естественного языка в общем случае включает блок анализа речевого сообщения пользователя, блок интерпретации сообщения, блок порождения смысла ответа и блок синтеза поверхностной структуры высказывания. Особой частью системы является диалоговый компонент, в котором зафиксированы стратегии ведения диалога, условия применения этих стратегий, способы преодоления возможных коммуникативных неудач (сбоев в процессе общения).

Среди компьютерных систем обработки естественного языка обычно выделяются вопросно-ответные системы, диалоговые системы решения задач и системы обработки связных текстов. Изначально вопросно-ответные системы стали разрабатываться как реакция на плохое качество кодировки запросов при поиске информации в информационно-поисковых системах. Поскольку проблемная область таких систем была сильно ограничена, это несколько упрощало алгоритмы перевода запросов в представление на формальном языке и обратную процедуру преобразования формального представления в высказывания на естественном языке. Из отечественных разработок к программам такого типа относится система ПОЭТ, созданная коллективом исследователей под руководством Э.В.Попова. Система обрабатывает запросы на русском языке (с небольшими ограничениями) и синтезирует ответ. Блок-схема программы предполагает прохождение всех этапов анализа (морфологического, синтаксического и семантического) и соответствующих этапов синтеза.

Диалоговые системы решения задач, в отличие от систем предшествующего типа, играют в коммуникации активную роль, поскольку их задача заключается в том, чтобы получить решение проблемы на основе тех знаний, которые представлены в ней самой, и той информации, которую можно получить от пользователя. Система содержит структуры знаний, в которых фиксируются типичные последовательности действий для решения задач в данной проблемной области, а также сведения о необходимых ресурсах. Когда пользователь задает вопрос или ставит определенную задачу, активизируется соответствующий сценарий. Если какие-то компоненты сценария пропущены или отсутствуют какие-то ресурсы, система выступает инициатором коммуникации. Так работает, например, система SNUKA, решающая задачи планирования военных операций.

Системы обработки связных текстов довольно разнообразны по структуре. Их общей чертой можно считать широкое использование технологий представления знаний. Функции систем такого рода заключаются в понимании текста и ответах на вопросы о его содержании. Понимание рассматривается не как универсальная категория, а как процесс извлечения информации из текста, определяемый конкретным коммуникативным намерением. Иными словами, текст «прочитывается» только с установкой на то, что именно потенциальный пользователь захочет узнать о нем. Тем самым и системы обработки связных текстов оказываются отнюдь не универсальными, а проблемно-ориентированными. Типичными примерами систем обсуждаемого типа могут служить системы RESEARCHER и TAILOR, образующие единый программный комплекс, позволяющий пользователю получить информацию из рефератов патентов, описывающих сложные физические объекты.

Важнейшим направлением компьютерной лингвистики является разработка информационно-поисковых систем (ИПС). Последние возникли в конце 1950-х – начале 1960-х годов как ответ на резкое возрастание объемов научно-технической информации. По типу хранимой и обрабатываемой информации, а также по особенностям поиска ИПС разделяются на две больших группы – документальные и фактографические. В документальных ИПС хранятся тексты документов или их описания (рефераты, библиографические карточки и т.д.). Фактографические ИПС имеют дело с описанием конкретных фактов, причем не обязательно в текстовой форме. Это могут быть таблицы, формулы и другие виды представления данных. Существуют и смешанные ИПС, включающие как документы, так и фактографическую информацию. В настоящее время фактографические ИПС строятся на основе технологий баз данных (БД). Для обеспечения информационного поиска в ИПС создаются специальные информационно-поисковые языки, в основе которых лежат информационно-поисковые тезаурусы. Информационно-поисковый язык – это формальный язык, предназначенный для описания отдельных аспектов плана содержания документов, хранящихся в ИПС, и запроса. Процедура описания документа на информационно-поисковом языке называется индексированием. В результате индексирования каждому документу приписывается его формальное описание на информационно-поисковом языке – поисковый образ документа. Аналогичным образом индексируется и запрос, которому приписывается поисковый образ запроса и поисковое предписание. Алгоритмы информационного поиска основаны на сравнении поискового предписания с поисковым образом запроса. Критерий выдачи документа на запрос может состоять в полном или частичном совпадении поискового образа документа и поискового предписания. В ряде случаев пользователь имеет возможность сам сформулировать критерии выдачи. Это определяется его информационной потребностью. В автоматизированных ИПС чаще используются дескрипторные информационно-поисковые языки. Тематика документа описывается совокупностью дескрипторов. В качестве дескрипторов выступают слова, термины, обозначающие простые, достаточно элементарные категории и понятия проблемной области. В поисковый образ документа вводится столько дескрипторов, сколько различных тем затрагивается в документе. Количество дескрипторов не ограничивается, что позволяет описать документ в многомерной матрице признаков. Часто в дескрипторном информационно-поисковом языке налагаются ограничения на сочетаемость дескрипторов. В этом случае можно говорить о том, что информационно-поисковый язык обладает синтаксисом.

Одна из первых систем, работавших с дескрипторным языком, была американская система УНИТЕРМ, созданная М.Таубе. В качестве дескрипторов в этой системе функционировали ключевые слова документа – унитермы. Особенность этой ИПС заключается в том, что изначально словарь информационного языка не задавался, а возникал в процессе индексирования документа и запроса. Развитие современных информационно-поисковых систем связано с разработкой ИПС бестезаурусного типа. Такие ИПС работают с пользователем на ограниченном естественном языке, а поиск осуществляется по текстам рефератов документов, по их библиографическим описаниям, а часто и по самим документам. Для индексирования в ИПС бестезаурусного типа используются слова и словосочетания естественного языка.

К области компьютерной лингвистики в определенной степени могут быть отнесены работы в области создания гипертекстовых систем, рассматриваемых как особый способ организации текста и даже как принципиально новый вид текста, противопоставленный по многим своим свойствам обычному тексту, сформированному в гутенберговской традиции книгопечатания. Идея гипертекста связывается с именем Ванневара Буша – советника президента Ф.Рузвельта по науке. В.Буш теоретически обосновал проект технической системы «Мемекс», которая позволяла пользователю связывать тексты и их фрагменты по различным типам связей, преимущественно по ассоциативным отношениям. Отсутствие компьютерной техники сделало проект труднореализуемым, поскольку механическая система оказалась чрезмерно сложной для практического воплощения.

Идея Буша в 1960-е годы получила второе рождение в системе «Ксанаду» Т.Нельсона, которая уже предполагала использование компьютерной техники. «Ксанаду» позволял пользователю прочитывать совокупность введенных в систему текстов различными способами, в различной последовательности, программное обеспечение давало возможность как запоминать последовательность просмотренных текстов, так и выбирать из них практически любой в произвольный момент времени. Множество текстов со связывающими их отношениями (системой переходов) было названо Т.Нельсоном гипертекстом. Многие исследователи рассматривают создание гипертекста как начало новой информационной эпохи, противопоставленной эре книгопечатания. Линейность письма, внешне отражающая линейность речи, оказывается фундаментальной категорией, ограничивающей мышление человека и понимание текста. Мир смысла нелинеен, поэтому сжатие смысловой информации в линейном речевом отрезке требует использования специальных «коммуникативных упаковок» – членение на тему и рему, разделение плана содержания высказывания на эксплицитные (утверждение, пропозиция, фокус) и имплицитные (пресуппозиция, следствие, импликатура дискурса) слои. Отказ от линейности текста и в процессе его представления читателю (т.е. при чтении и понимании) и в процессе синтеза, по мнению теоретиков, способствовал бы «освобождению» мышления и даже возникновению его новых форм.

В компьютерной системе гипертекст представлен в виде графа, в узлах которого находятся традиционные тексты или их фрагменты, изображения, таблицы, видеоролики и т.д. Узлы связаны разнообразными отношениями, типы которых задаются разработчиками программного обеспечения гипертекста или самим читателем. Отношения задают потенциальные возможности передвижения, или навигации по гипертексту. Отношения могут быть однонаправленными или двунаправленными. Соответственно, двунаправленные стрелки позволяют двигаться пользователю в обе стороны, а однонаправленные – только в одну. Цепочка узлов, через которые проходит читатель при просмотре компонентов текста, образует путь, или маршрут.

Компьютерные реализации гипертекста бывают иерархическими или сетевыми. Иерархическое – древовидное – строение гипертекста существенно ограничивает возможности перехода между его компонентами. В таком гипертексте отношения между компонентами напоминают структуру тезауруса, основанного на родо-видовых связях. Сетевой гипертекст позволяет использовать различные типы отношений между компонентами, не ограничиваясь отношениями «род – вид». По способу существования гипертекста выделяются статические и динамические гипертексты. Статический гипертекст не меняется в процессе эксплуатации; в нем пользователь может фиксировать свои комментарии, однако они не меняют существо дела. Для динамического гипертекста изменение является нормальной формой существования. Обычно динамические гипертексты функционируют там, где необходимо постоянно анализировать поток информации, т.е. в информационных службах различного рода. Гипертекстовой является, например, Аризонская информационная система (AAIS), которая ежемесячно пополняется на 300–500 рефератов в месяц.

Отношения между элементами гипертекста могут изначально фиксироваться создателями, а могут порождаться всякий раз, когда происходит обращение пользователя к гипертексту. В первом случае речь идет о гипертекстах жесткой структуры, а во втором – о гипертекстах мягкой структуры. Жесткая структура технологически вполне понятна. Технология организации мягкой структуры должна основываться на семантическом анализе близости документов (или других источников информации) друг к другу. Это нетривиальная задача компьютерной лингвистики. В настоящее время широко распространено использование технологий мягкой структуры на ключевых словах. Переход от одного узла к другому в сети гипертекста осуществляется в результате поиска ключевых слов. Поскольку набор ключевых слов каждый раз может различаться, каждый раз меняется и структура гипертекста.

Технология построения гипертекстовых систем не делает различий между текстовой и нетекстовой информацией. Между тем включение визуальной и звуковой информации (видеороликов, картин, фотографий, звукозаписей и т.п.) требует существенного изменения интерфейса с пользователем и более мощной программной и компьютерной поддержки. Такие системы получили название гипермедиа, или мультимедиа. Наглядность мультимедийных систем предопределила их широкое использование в обучении, в создании компьютерных вариантов энциклопедий. Существуют, например, прекрасно выполненные CD-ромы с мультимедийными системами по детским энциклопедиям издательства «Дорлин Киндерсли».

В рамках компьютерной лексикографии разрабатываются компьютерные технологии составления и эксплуатации словарей. Специальные программы – базы данных, компьютерные картотеки, программы обработки текста – позволяют в автоматическом режиме формировать словарные статьи, хранить словарную информацию и обрабатывать ее. Множество различных компьютерных лексикографических программ разделяются на две больших группы: программы поддержки лексикографических работ и автоматические словари различных типов, включающие лексикографические базы данных. Автоматический словарь – это словарь в специальном машинном формате, предназначенный для использования на ЭВМ пользователем или компьютерной программой обработки текста. Иными словами, различаются автоматические словари конечного пользователя-человека и автоматические словари для программ обработки текста. Автоматические словари, предназначенные для конечного пользователя, по интерфейсу и структуре словарной статьи существенно отличаются от автоматических словарей, включенных в системы машинного перевода, системы автоматического реферирования, информационного поиска и т.д. Чаще всего они являются компьютерными версиями хорошо известных обычных словарей. На рынке программного обеспечения имеются компьютерные аналоги толковых словарей английского языка (автоматический Вебстер, автоматический толковый словарь английского языка издательства Коллинз, автоматический вариант Нового большого англо-русского словаря под ред. Ю.Д.Апресяна и Э.М.Медниковой), существует и компьютерная версия словаря Ожегова. Автоматические словари для программ обработки текста можно назвать автоматическими словарями в точном смысле. Они, как правило, не предназначены для обычного пользователя. Особенности их структуры, сфера охвата словарного материала задаются теми программами, которые с ними взаимодействуют.

Компьютерное моделирование структуры сюжета – еще одно перспективное направление компьютерной лингвистики. Изучение структуры сюжета относится к проблематике структурного литературоведения (в широком смысле), семиотики и культурологии. Имеющиеся компьютерные программы моделирования сюжета основываются на трех базовых формализмах представления сюжета – морфологическом и синтаксическом направлениях представления сюжета, а также на когнитивном подходе. Идеи о морфологическом устройстве структуры сюжета восходят к известным работам В.Я.Проппа (см .) о русской волшебной сказке. Пропп заметил, что при обилии персонажей и событий волшебной сказки количество функций персонажей ограничено, и предложил аппарат для описания этих функций. Идеи Проппа легли в основу компьютерной программы TALE, моделирующей порождение сюжета сказки. В основу алгоритма программы TALE положена последовательность функций персонажей сказки. Фактически функции Проппа задавали множество типизированных ситуаций, упорядоченных на основе анализа эмпирического материала. Возможности сцепления различных ситуаций в правилах порождения определялись типичной последовательностью функций – в том виде, в котором это удается установить из текстов сказок. В программе типичные последовательности функций описывались как типовые сценарии встреч персонажей.

Теоретическую основу синтаксического подхода к сюжету текста составили «сюжетные грамматики», или «грамматики повествования» (story grammars). Они появились в середине 1970-х годов в результате переноса идей порождающей грамматики Н.Хомского на описание макроструктуры текста. Если важнейшими составляющими синтаксической структуры в порождающей грамматике были глагольные и именные группы, то в большинстве сюжетных грамматик в качестве базовых выделялись экспозиция (setting), событие и эпизод. В теории сюжетных грамматик широко обсуждались условия минимальности, то есть ограничения, определявшие статус последовательности из элементов сюжета как нормальный сюжет. Оказалось, однако, что чисто лингвистическими методами это сделать невозможно. Многие ограничения носят социокультурный характер. Сюжетные грамматики, существенно различаясь набором категорий в дереве порождения, допускали весьма ограниченный набор правил модификации повествовательной (нарративной) структуры.

В начале 1980-х годов одной из учениц Р.Шенка – В.Ленерт в рамках работ по созданию компьютерного генератора сюжетов был предложен оригинальный формализм эмоциональных сюжетных единиц (Affective Plot Units), оказавшийся мощным средством представления структуры сюжета. При том, что он был изначально разработан для системы искусственного интеллекта, этот формализм использовался в чисто теоретических исследованиях. Сущность подхода Ленерт заключалась в том, что сюжет описывался как последовательная смена когнитивно-эмоциональных состояний персонажей. Тем самым в центре внимания формализма Ленерт стоят не внешние компоненты сюжета – экспозиция, событие, эпизод, мораль, – а его содержательные характеристики. В этом отношении формализм Ленерт отчасти оказывается возвращением к идеям Проппа.

К компетенции компьютерной лингвистики относится и машинный перевод, переживающий в настоящее время второе рождение.

Литература:

Попов Э.В. Общение с ЭВМ на естественном языке . М., 1982
Садур В.Г. Речевое общение с электронно-вычислительными машинами и проблемы их развития . – В кн.: Речевое общение: проблемы и перспективы. М., 1983
Баранов А.Н. Категории искусственного интеллекта в лингвистической семантике. Фреймы и сценарии . М., 1987
Кобозева И.М., Лауфер Н.И., Сабурова И.Г. Моделирование общения в человеко-машинных системах . – Лингвистическое обеспечение информационных систем. М., 1987
Олкер Х.Р. Волшебные сказки, трагедии и способы изложение мировой истории . – В кн.: Язык и моделирование социального взаимодействия. М., 1987
Городецкий Б.Ю. Компьютерная лингвистика: моделирование языкового общения
Маккьюин К. Дискурсивные стратегии для синтеза текста на естественном языке . – Новое в зарубежной лингвистике. Вып. XXIV, Компьютерная лингвистика. М., 1989
Попов Э.В., Преображенский А.Б. Особенности реализации ЕЯ-систем
Преображенский А.Б. Состояние развития современных ЕЯ-систем . – Искусственный интеллект. Кн. 1, Системы общения и экспертные системы. М., 1990
Субботин М.М. Гипертекст. Новая форма письменной коммуникации . – ВИНИТИ, Сер. Информатика, 1994, т. 18
Баранов А.Н. Введение в прикладную лингвистику . М., 2000



Новоселова Ирина

Почему не все машинные переводы совершенны? От чего зависит качество перевода? Достаточно ли автору знаний, чтобы использовать и дополнять существующие компьютерные словари? Ответы на эти вопросы автор стремилась представить в своей работе. Отчет по теме - в прикрепленном файле, продукт проектной деятельности - на школьном портале

Скачать:

Предварительный просмотр:

Открытая

Международная

научно-исследовательская

конференция

старшеклассников и студентов

«Образование. Наука. Профессия»

Секция «Лингвистика иноязычная»

«Компьютерная лингвистика»

Выполнила Новосёлова Ирина

МОУ гимназия № 39 «Классическая»

10 «Б» класс

Научные руководители:

Чигринёва Татьяна Дмитриевна,

учитель английского языка высшей категории

Осипова Светлана Леонидовна,

учитель информатики высшей категории

г. Отрадный

2011

  1. Англоязычные слова в ИКТ

Смотрите на сайте

  1. Мой эксперимент

Одна из задач – провести эксперимент, который заключен в сравнении возможностей различных компьютерных лингвистических словарей, по более точно-приближенному переводу с английского на русский.

Были протестированы следующие сайты:

  1. http://translate.eu/
  2. http://translate.google.ru/#ru
  3. http://www.langinfo.ru/index.php?div=6
  4. http://www2.worldlingo.com/ru/products_services/worldlingo_translator.html

Для чистоты эксперимента, я выбирала предложения с разной степенью сложности стилистического перевода. Фразы для ввода следующие:

1. A new report says today’s teenagers are more selfish than they were 20 years ago

(Новый доклад говорит, что современные подростки более эгоистичны, чем они были 20 лет назад)

2. She believes video games and the Internet are the biggest reasons for this increased selfishness.

(Она верит, что видео игры и Интернет являются наиболее значимыми причинами для этой возрастающей эгоистичности)

3. They want to be better than others

(Они хотят быть лучше, чем остальные)

4. She found the big increase started from the year 2000, which is when violent video games became really popular.

(Она нашла большой рост, начавшийся с 2000 года, когда жестокие видео игры стали действительно популярны)

Переведя эти предложения на сайтах онлайн-переводчиков, я получила следующие результаты:

  1. http://translate.eu/

Современная компьютерная лингвистика очень во многом ориентирована на использование математических моделей. Есть даже расхожее мнение, что лингвисты не особенно нужны для автоматического моделирования естественного языка. Известно крылатое выражение Фредерика Елинека , руководителя центра распознавания речи университета Джона Хопкинса: "Anytime a linguist leaves the group, the recognition rate goes up" - каждый раз, когда лингвист покидает рабочую группу, качество распознавания повышается.

Однако, чем более сложные и многоуровневые задачи лингвистического моделирования ставятся перед разработчиками автоматических систем, тем очевидней становится, что их решение невозможно без учета лингвистической теории, понимания того, как функционирует язык, лингвистической экспертной компетенции. В то же время, стало очевидно, что автоматические методы анализа и моделирования языковых данных могут существенно обогатить теоретические лингвистические исследования, являясь и средством для сбора языковых данных и инструментом проверки состоятельности той или иной лингвистической гипотезы.

Форум по оценке систем автоматической обработки текста

С.Ю.Толдова, О.Н. Ляшевская, А.А. Бонч-Осмоловская

Как формализовать лексическое значение, сделать его "машиночитаемым"? Ответ на это дают дистрибуционные модели языка, в которых значение слова есть сумма его контекстов в достаточно большом корпусе. Искусственные нейронные сети позволяют быстро и качественно обучать такие модели.

Денис Кирьянов, Таня Панова (научный руководитель Б.В. Орехов)

У этой программы есть две функции: а) нормализация текста на идише, б) транслитерация из квадратного письма в латиницу. Эти проблемы очень актуальны: до настоящего момента не существовало ни одного нормализатора, если не считать таковыми спелл-чекеры. Меж тем, практически каждое издательство, выпускавшее книги на идише, следовало своей орфографической практике. Нормализатор необходим для работы над корпусом языка идиш: для сведения всех текстов к единой орфографии, распознаваемой парсером. Транслитерация позволит работать с материалом идиша и типологам.

ВИДЕО сотрудников Школы лингвистики:

По выбору; 3-й курс, 2, 3 модуль

Обязательный; 1-й курс, 2 модуль

По выбору; 3-й курс, 3 модуль

Обязательный; 4-й курс, 1-3 модуль

Обязательный; 4-й курс, 2 модуль

Обязательный; 2-й курс, 1, 2, 4 модуль