Cea mai ridicată temperatură este caracteristică stratului. straturile superioare ale atmosferei. Compoziția atmosferei pământului

Stratosfera este unul dintre straturile superioare ale învelișului de aer al planetei noastre. Începe la o altitudine de aproximativ 11 km deasupra solului. Avioanele de pasageri nu mai zboară aici și rareori se formează nori. Ozonul este situat în stratosferă - o înveliș subțire care protejează planeta de pătrunderea radiațiilor ultraviolete dăunătoare.

Învelișul de aer al planetei

Atmosfera este învelișul gazos al Pământului, adiacent suprafeței interioare a hidrosferei și scoarței terestre. Limita sa exterioară trece treptat în spațiul cosmic. Compoziția atmosferei include gaze: azot, oxigen, argon, dioxid de carbon și așa mai departe, precum și impurități sub formă de praf, picături de apă, cristale de gheață, produse de combustie. Raportul dintre elementele principale ale carcasei de aer este menținut constant. Excepțiile sunt dioxidul de carbon și apa - cantitatea lor în atmosferă se modifică adesea.

Straturi ale învelișului gazos

Atmosfera este împărțită în mai multe straturi, situate unul deasupra celuilalt și având caracteristici în compoziție:

    strat limită - direct adiacent suprafeței planetei, extinzându-se la o înălțime de 1-2 km;

    troposfera este al doilea strat, limita exterioară este situată în medie la o altitudine de 11 km, aici se concentrează aproape toți vaporii de apă ai atmosferei, se formează nori, se ridică cicloni și anticicloni, temperatura crește pe măsură ce înălțimea crește;

    tropopauza - strat de tranziție, caracterizat prin încetarea scăderii temperaturii;

    stratosfera este un strat care se extinde până la o înălțime de 50 km și este împărțit în trei zone: de la 11 la 25 km temperatura se schimbă ușor, de la 25 la 40 - temperatura crește, de la 40 la 50 - temperatura rămâne constantă ( stratopauză);

    mezosfera se extinde până la o înălțime de până la 80-90 km;

    termosfera ajunge la 700-800 km deasupra nivelului mării, aici la o altitudine de 100 km se află linia Karman, care este luată drept graniță între atmosfera Pământului și spațiu;

    Exosfera este numită și zonă de împrăștiere, aici pierde foarte mult particule de materie și zboară în spațiu.

Schimbările de temperatură în stratosferă

Deci, stratosfera este partea din învelișul gazos al planetei care urmează troposfera. Aici, temperatura aerului, care este constantă pe tot parcursul tropopauzei, începe să se schimbe. Înălțimea stratosferei este de aproximativ 40 km. Limita inferioară este de 11 km deasupra nivelului mării. Pornind de la acest semn, temperatura suferă ușoare modificări. La o altitudine de 25 km, indicele de încălzire începe să crească încet. După marca de 40 km deasupra nivelului mării, temperatura crește de la -56,5 ° C la +0,8 ° C. Mai departe, rămâne aproape de zero grade până la o altitudine de 50-55 km. Zona cuprinsă între 40 și 55 de kilometri se numește stratopauză, deoarece temperatura aici nu se schimbă. Este o zonă de tranziție de la stratosferă la mezosferă.

Caracteristicile stratosferei

Stratosfera Pământului conține aproximativ 20% din masa întregii atmosfere. Aerul de aici este atât de rarefiat încât este imposibil ca o persoană să rămână fără un costum spațial special. Acest fapt este unul dintre motivele pentru care zborurile în stratosferă au început să fie efectuate doar relativ recent.

O altă caracteristică a învelișului de gaz al planetei la o altitudine de 11-50 km este o cantitate foarte mică de vapori de apă. Din acest motiv, norii nu se formează aproape niciodată în stratosferă. Pentru ei, pur și simplu nu există material de construcție. Cu toate acestea, rareori este posibil să se observe așa-numiții nori sidef, care „decorează” stratosfera (fotografia este prezentată mai jos) la o altitudine de 20-30 km deasupra nivelului mării. Subțire, de parcă formațiuni luminoase din interior pot fi observate după apus sau înainte de răsărit. Forma norilor sidef este asemănătoare cu cirrus sau cirrocumulus.

Stratul de ozon al Pământului

Principala trăsătură distinctivă a stratosferei este concentrația maximă de ozon în întreaga atmosferă. Se formează sub influența luminii solare și protejează toată viața de pe planetă de radiațiile lor distructive. Stratul de ozon al Pământului este situat la o altitudine de 20-25 km deasupra nivelului mării. Moleculele de O 3 sunt distribuite în toată stratosferă și chiar există în apropierea suprafeței planetei, dar cea mai mare concentrație a acestora se observă la acest nivel.

Trebuie remarcat faptul că stratul de ozon al Pământului este de numai 3-4 mm. Aceasta va fi grosimea sa dacă particulele acestui gaz sunt plasate în condiții de presiune normală, de exemplu, lângă suprafața planetei. Ozonul se formează ca urmare a descompunerii unei molecule de oxigen sub acțiunea radiațiilor ultraviolete în doi atomi. Una dintre ele se combină cu o moleculă „cu drepturi depline” și se formează ozon - O 3.

Apărător periculos

Astfel, astăzi stratosfera este un strat al atmosferei mai explorat decât la începutul secolului trecut. Cu toate acestea, viitorul stratului de ozon, fără de care viața pe Pământ nu ar fi apărut, nu este încă foarte clar. În timp ce țările reduc producția de freon, unii oameni de știință spun că acest lucru nu va aduce prea multe beneficii, cel puțin într-un astfel de ritm, în timp ce alții spun că acest lucru nu este deloc necesar, deoarece majoritatea substanțelor nocive se formează în mod natural. Cine are dreptate, timpul va spune.

ATMOSFERA PĂMÂNTULUI(greacă atmos steam + sphaira ball) - înveliș gazos care înconjoară Pământul. Masa atmosferei este de aproximativ 5,15·10 15 Semnificația biologică a atmosferei este enormă. În atmosferă, există un schimb de masă-energie între natura animată și cea neînsuflețită, între floră și faună. Azotul atmosferic este asimilat de microorganisme; plantele sintetizează substanțe organice din dioxid de carbon și apă datorită energiei soarelui și eliberează oxigen. Prezența atmosferei asigură conservarea apei pe Pământ, care este și o condiție importantă pentru existența organismelor vii.

Studiile efectuate cu ajutorul rachetelor geofizice de mare altitudine, a sateliților de pământ artificial și a stațiilor automate interplanetare au stabilit că atmosfera pământului se întinde pe mii de kilometri. Limitele atmosferei sunt instabile, sunt influențate de câmpul gravitațional al lunii și de presiunea fluxului de lumină solară. Deasupra ecuatorului, în regiunea umbrei pământului, atmosfera atinge înălțimi de aproximativ 10.000 km, iar deasupra polilor limitele sale sunt la 3.000 km de suprafața pământului. Cea mai mare parte a atmosferei (80-90%) se află la altitudini de până la 12-16 km, ceea ce se explică prin natura exponențială (neliniară) a scăderii densității (rarefacție) mediului gazos ca înălțimea de deasupra. nivelul mării crește.

Existența majorității organismelor vii în condiții naturale este posibilă în limite și mai înguste ale atmosferei, până la 7-8 km, unde o combinație de factori atmosferici precum compoziția gazului, temperatura, presiunea și umiditatea, necesară pentru cursul activ al procesele biologice, are loc. Mișcarea și ionizarea aerului, precipitațiile atmosferice și starea electrică a atmosferei sunt, de asemenea, de importanță igienă.

Compoziția gazelor

Atmosfera este un amestec fizic de gaze (Tabelul 1), în principal azot și oxigen (78,08 și 20,95 % vol.). Raportul gazelor atmosferice este aproape același până la altitudini de 80-100 km. Constanța părții principale a compoziției gazoase a atmosferei se datorează echilibrării relative a proceselor de schimb de gaze între natura animată și cea neînsuflețită și amestecării continue a maselor de aer în direcțiile orizontale și verticale.

Tabelul 1. CARACTERISTICI ALE COMPOZIȚIEI CHIMICE A AERULUI USC ATMOSFERIC ÎN LÂNGĂ SUPRAFAȚĂ PĂMÂNTULUI

Compoziția gazelor

Concentrație în volum, %

Oxigen

Dioxid de carbon

Oxid de azot

Dioxid de sulf

0 până la 0,0001

0 la 0,000007 vara, 0 la 0,000002 iarna

dioxid de azot

0 până la 0,000002

Monoxid de carbon

La altitudini de peste 100 km, procentul de gaze individuale se modifică datorită stratificării difuze a acestora sub influența gravitației și a temperaturii. În plus, sub acțiunea părții cu lungime de undă scurtă a ultravioletelor și a razelor X la o altitudine de 100 km sau mai mult, moleculele de oxigen, azot și dioxid de carbon se disociază în atomi. La altitudini mari, aceste gaze sunt sub formă de atomi puternic ionizați.

Conținutul de dioxid de carbon din atmosfera diferitelor regiuni ale Pământului este mai puțin constant, ceea ce se datorează parțial distribuției inegale a marilor întreprinderi industriale care poluează aerul, precum și distribuției neuniforme a vegetației și a bazinelor de apă care absorb dioxidul de carbon. pe Pământ. De asemenea, variabil în atmosferă este și conținutul de aerosoli (vezi) - particule suspendate în aer cu dimensiuni variind de la câțiva milimicroni la câteva zeci de microni - formate ca urmare a erupțiilor vulcanice, a exploziilor artificiale puternice, a poluării de către întreprinderile industriale. Concentrația de aerosoli scade rapid odată cu înălțimea.

Cea mai instabilă și importantă dintre componentele variabile ale atmosferei este vaporii de apă, a căror concentrație la suprafața pământului poate varia de la 3% (la tropice) la 2 × 10 -10% (în Antarctica). Cu cât temperatura aerului este mai mare, cu atât mai multă umiditate, ceteris paribus, poate fi în atmosferă și invers. Cea mai mare parte a vaporilor de apă se concentrează în atmosferă până la altitudini de 8-10 km. Conținutul de vapori de apă din atmosferă depinde de influența combinată a proceselor de evaporare, condensare și transport orizontal. La altitudini mari, din cauza scaderii temperaturii si a condensarii vaporilor, aerul este practic uscat.

Atmosfera Pământului, pe lângă oxigenul molecular și atomic, conține o cantitate mică de ozon (vezi), a cărui concentrație este foarte variabilă și variază în funcție de înălțime și anotimp. Cea mai mare parte a ozonului este conținută în regiunea polilor până la sfârșitul nopții polare, la o altitudine de 15-30 km, cu o scădere bruscă în sus și în jos. Ozonul apare ca urmare a acțiunii fotochimice a radiației solare ultraviolete asupra oxigenului, în principal la altitudini de 20-50 km. În acest caz, moleculele de oxigen diatomic se descompun parțial în atomi și, unind moleculele necompuse, formează molecule triatomice de ozon (formă polimerică, alotropă de oxigen).

Prezența în atmosferă a unui grup de așa-numite gaze inerte (heliu, neon, argon, cripton, xenon) este asociată cu fluxul continuu al proceselor naturale de dezintegrare radioactivă.

Semnificația biologică a gazelor atmosfera este foarte mare. Pentru majoritatea organismelor pluricelulare, un anumit conținut de oxigen molecular într-un mediu gazos sau apos este un factor indispensabil în existența lor, care în timpul respirației determină eliberarea de energie din substanțele organice create inițial în timpul fotosintezei. Nu este o coincidență că limitele superioare ale biosferei (partea suprafeței globului și partea inferioară a atmosferei unde există viață) sunt determinate de prezența unei cantități suficiente de oxigen. În procesul de evoluție, organismele s-au adaptat la un anumit nivel de oxigen din atmosferă; modificarea conținutului de oxigen în direcția scăderii sau creșterii are un efect advers (vezi Răul de altitudine, Hiperoxie, Hipoxie).

Forma ozon-alotropă a oxigenului are, de asemenea, un efect biologic pronunțat. La concentrații care nu depășesc 0,0001 mg/l, ceea ce este tipic pentru zonele de stațiune și coastele mării, ozonul are un efect de vindecare - stimulează respirația și activitatea cardiovasculară, îmbunătățește somnul. Odată cu creșterea concentrației de ozon, se manifestă efectul său toxic: iritație oculară, inflamație necrotică a membranelor mucoase ale tractului respirator, exacerbare a bolilor pulmonare, nevroze autonome. Intrând în combinație cu hemoglobina, ozonul formează methemoglobină, ceea ce duce la o încălcare a funcției respiratorii a sângelui; transferul oxigenului de la plămâni la țesuturi devine dificil, se dezvoltă fenomenele de sufocare. Oxigenul atomic are un efect advers similar asupra organismului. Ozonul joacă un rol semnificativ în crearea regimurilor termice ale diferitelor straturi ale atmosferei datorită absorbției extrem de puternice a radiației solare și a radiațiilor terestre. Ozonul absoarbe cel mai intens razele ultraviolete și infraroșii. Razele solare cu o lungime de undă mai mică de 300 nm sunt aproape complet absorbite de ozonul atmosferic. Astfel, Pământul este înconjurat de un fel de „ecran de ozon” care protejează multe organisme de efectele nocive ale radiațiilor ultraviolete de la soare. Azotul din aerul atmosferic are o mare importanță biologică, în primul rând ca sursă de așa-numitele azot fix - o resursă de hrană vegetală (și în cele din urmă animală). Semnificația fiziologică a azotului este determinată de participarea sa la crearea nivelului de presiune atmosferică necesar proceselor de viață. În anumite condiții de modificare a presiunii, azotul joacă un rol major în dezvoltarea unui număr de tulburări în organism (vezi Boala de decompresie). Sunt controversate ipotezele că azotul slăbește efectul toxic al oxigenului asupra organismului și este absorbit din atmosferă nu numai de microorganisme, ci și de animalele superioare.

Gazele inerte ale atmosferei (xenon, cripton, argon, neon, heliu) la presiunea parțială pe care o creează în condiții normale pot fi clasificate drept gaze indiferente din punct de vedere biologic. Cu o creștere semnificativă a presiunii parțiale, aceste gaze au un efect narcotic.

Prezența dioxidului de carbon în atmosferă asigură acumularea de energie solară în biosferă datorită fotosintezei compușilor complecși ai carbonului, care apar, se schimbă și se descompun continuu în cursul vieții. Acest sistem dinamic este menținut ca urmare a activității algelor și a plantelor terestre care captează energia luminii solare și o folosesc pentru a transforma dioxidul de carbon (vezi) și apa într-o varietate de compuși organici cu eliberare de oxigen. Extinderea în sus a biosferei este parțial limitată de faptul că la altitudini mai mari de 6-7 km plantele care conțin clorofilă nu pot trăi din cauza presiunii parțiale scăzute a dioxidului de carbon. Dioxidul de carbon este, de asemenea, foarte activ din punct de vedere fiziologic, deoarece joacă un rol important în reglarea proceselor metabolice, activitatea sistemului nervos central, respirația, circulația sângelui și regimul de oxigen al organismului. Totuși, această reglare este mediată de influența dioxidului de carbon produs de organismul însuși, și nu de atmosferă. În țesuturile și sângele animalelor și oamenilor, presiunea parțială a dioxidului de carbon este de aproximativ 200 de ori mai mare decât presiunea sa în atmosferă. Și numai cu o creștere semnificativă a conținutului de dioxid de carbon din atmosferă (mai mult de 0,6-1%), există încălcări în organism, notate cu termenul de hipercapnie (vezi). Eliminarea completă a dioxidului de carbon din aerul inhalat nu poate avea un efect negativ direct asupra organismelor umane și animale.

Dioxidul de carbon joacă un rol în absorbția radiațiilor cu lungime de undă lungă și în menținerea „efectului de seră” care ridică temperatura în apropierea suprafeței Pământului. Se studiază și problema influenței asupra regimurilor termice și de altă natură a atmosferei a dioxidului de carbon, care pătrunde în aer în cantități uriașe ca deșeu al industriei.

Vaporii de apă atmosferici (umiditatea aerului) afectează și corpul uman, în special schimbul de căldură cu mediul.

Ca urmare a condensării vaporilor de apă în atmosferă, se formează nori și cad precipitații (ploaie, grindină, zăpadă). Vaporii de apă, împrăștiind radiația solară, participă la crearea regimului termic al Pământului și a straturilor inferioare ale atmosferei, la formarea condițiilor meteorologice.

Presiunea atmosferică

Presiunea atmosferică (barometrică) este presiunea exercitată de atmosferă sub influența gravitației pe suprafața Pământului. Valoarea acestei presiuni în fiecare punct al atmosferei este egală cu greutatea coloanei de aer de deasupra cu o bază unitară, extinzându-se deasupra locului de măsurare până la limitele atmosferei. Presiunea atmosferică se măsoară cu un barometru (vezi) și se exprimă în milibari, în newtoni pe metru pătrat sau înălțimea coloanei de mercur din barometru în milimetri, redusă la 0 ° și valoarea normală a accelerației gravitației. În tabel. 2 prezintă cele mai frecvent utilizate unități de presiune atmosferică.

Modificarea presiunii are loc din cauza încălzirii neuniforme a maselor de aer situate deasupra solului și apei la diferite latitudini geografice. Pe măsură ce temperatura crește, densitatea aerului și presiunea pe care o creează scade. O acumulare uriașă de aer cu mișcare rapidă cu presiune redusă (cu o scădere a presiunii de la periferie la centrul vortexului) se numește ciclon, cu presiune crescută (cu o creștere a presiunii spre centrul vortexului) - un anticiclon. Pentru prognoza meteo sunt importante modificările neperiodice ale presiunii atmosferice, care apar în mase vaste în mișcare și sunt asociate cu apariția, dezvoltarea și distrugerea anticiclonilor și cicloanelor. În special schimbările mari ale presiunii atmosferice sunt asociate cu mișcarea rapidă a ciclonilor tropicali. În același timp, presiunea atmosferică poate varia cu 30-40 mbar pe zi.

Scăderea presiunii atmosferice în milibari pe o distanță de 100 km se numește gradient barometric orizontal. De obicei, gradientul barometric orizontal este de 1–3 mbar, dar în ciclonii tropicali se ridică uneori la zeci de milibari la 100 km.

Pe măsură ce altitudinea crește, presiunea atmosferică scade într-o relație logaritmică: la început foarte brusc, apoi din ce în ce mai puțin vizibil (Fig. 1). Prin urmare, curba presiunii barometrice este exponențială.

Scăderea presiunii pe unitatea de distanță verticală se numește gradient barometric vertical. Adesea folosesc reciproca acesteia - treapta barometrică.

Deoarece presiunea barometrică este suma presiunilor parțiale ale gazelor care formează aerul, este evident că odată cu ridicarea la înălțime, împreună cu scăderea presiunii totale a atmosferei, presiunea parțială a gazelor care formează sus scade si aerul. Valoarea presiunii parțiale a oricărui gaz din atmosferă se calculează prin formula

unde P x ​​este presiunea parțială a gazului, P z este presiunea atmosferică la altitudinea Z, X% este procentul de gaz a cărui presiune parțială urmează să fie determinată.

Orez. 1. Modificarea presiunii barometrice în funcție de înălțimea deasupra nivelului mării.

Orez. 2. Modificarea presiunii parțiale a oxigenului din aerul alveolar și saturarea sângelui arterial cu oxigen în funcție de modificarea altitudinii la respirația aerului și oxigenului. Respirația cu oxigen începe de la o înălțime de 8,5 km (experiment într-o cameră de presiune).

Orez. 3. Curbe comparative ale valorilor medii ale conștiinței active la o persoană în minute la diferite înălțimi după o creștere rapidă în timp ce respiră aer (I) și oxigen (II). La altitudini de peste 15 km, conștiința activă este la fel de perturbată atunci când respiră oxigen și aer. La altitudini de până la 15 km, respirația cu oxigen prelungește semnificativ perioada de conștiință activă (experiment într-o cameră de presiune).

Deoarece compoziția procentuală a gazelor atmosferice este relativ constantă, pentru a determina presiunea parțială a oricărui gaz, este necesar doar să se cunoască presiunea barometrică totală la o înălțime dată (Fig. 1 și Tabelul 3).

Tabelul 3. TABELUL ATMOSFEREI STANDARD (GOST 4401-64) 1

Înălțimea geometrică (m)

Temperatura

presiune barometrică

Presiunea parțială a oxigenului (mmHg)

mmHg Artă.

1 Dată sub formă prescurtată și completată cu coloana „Presiunea parțială a oxigenului”.

La determinarea presiunii parțiale a unui gaz în aer umed, presiunea (elasticitatea) vaporilor saturați trebuie scăzută din presiunea barometrică.

Formula pentru determinarea presiunii parțiale a unui gaz în aer umed va fi ușor diferită de cea a aerului uscat:

unde pH 2 O este elasticitatea vaporilor de apă. La t° 37°, elasticitatea vaporilor de apă saturați este de 47 mm Hg. Artă. Această valoare este utilizată la calcularea presiunilor parțiale ale gazelor din aerul alveolar în condiții de sol și de mare altitudine.

Efectele tensiunii arteriale ridicate și scăzute asupra organismului. Modificările presiunii barometrice în sus sau în jos au o varietate de efecte asupra organismului animalelor și oamenilor. Influența presiunii crescute este asociată cu acțiunea fizică și chimică mecanică și penetrantă a mediului gazos (așa-numitele efecte de compresie și penetrare).

Efectul de compresie se manifesta prin: compresie volumetrica generala, datorita cresterii uniforme a fortelor de presiune mecanica asupra organelor si tesuturilor; mecanonarcoză datorată compresiei volumetrice uniforme la presiune barometrică foarte mare; presiune locală neuniformă asupra țesuturilor care limitează cavitățile care conțin gaze în caz de comunicare afectată între aerul exterior și aerul din cavitate, de exemplu, urechea medie, cavitățile accesorii ale nasului (vezi Barotrauma); o creștere a densității gazelor în sistemul respirator extern, ceea ce determină o creștere a rezistenței la mișcările respiratorii, în special în timpul respirației forțate (exercitare, hipercapnie).

Efectul de penetrare poate duce la efectul toxic al oxigenului și al gazelor indiferente, o creștere a conținutului cărora în sânge și țesuturi provoacă o reacție narcotică, primele semne ale unei tăieturi atunci când se utilizează un amestec de azot-oxigen la om apar la o presiune de 4-8 atm. O creștere a presiunii parțiale a oxigenului reduce inițial nivelul de funcționare a sistemelor cardiovasculare și respiratorii din cauza opririi efectului de reglare a hipoxemiei fiziologice. Odată cu o creștere a presiunii parțiale a oxigenului în plămâni cu mai mult de 0,8-1 ata, se manifestă efectul său toxic (leziune a țesutului pulmonar, convulsii, colaps).

Efectele penetrante și compresive ale presiunii crescute a mediului gazos sunt utilizate în medicina clinică în tratamentul diferitelor boli cu tulburări generale și locale de alimentare cu oxigen (vezi Baroterapie, Oxigenoterapia).

Scăderea presiunii are un efect și mai pronunțat asupra organismului. Într-o atmosferă extrem de rarefiată, principalul factor patogenetic care duce la pierderea conștienței în câteva secunde și la moarte în 4-5 minute, este scăderea presiunii parțiale a oxigenului în aerul inhalat și apoi în aerul alveolar, sânge și țesuturi (Fig. 2 și 3). Hipoxia moderată determină dezvoltarea reacțiilor adaptative ale sistemului respirator și ale hemodinamicii, care vizează menținerea aportului de oxigen, în primul rând către organele vitale (creier, inimă). Cu o lipsă pronunțată de oxigen, procesele oxidative sunt inhibate (datorită enzimelor respiratorii), iar procesele aerobe de producere a energiei în mitocondrii sunt perturbate. Acest lucru duce mai întâi la o defalcare a funcțiilor organelor vitale și apoi la leziuni structurale ireversibile și moartea corpului. Dezvoltarea reacțiilor adaptative și patologice, o schimbare a stării funcționale a corpului și a performanței umane cu o scădere a presiunii atmosferice este determinată de gradul și rata de scădere a presiunii parțiale a oxigenului în aerul inhalat, durata șederii. la înălțime, intensitatea muncii prestate, starea inițială a corpului (vezi Răul de altitudine).

O scădere a presiunii la altitudini (chiar cu excluderea lipsei de oxigen) provoacă tulburări grave în organism, unite prin conceptul de „tulburări de decompresie”, care includ: flatulență la altitudine mare, barotită și barozinuzită, boala de decompresie la altitudine mare. și emfizemul tisular de mare altitudine.

Flatulența la altitudine mare se dezvoltă datorită expansiunii gazelor în tractul gastrointestinal cu o scădere a presiunii barometrice pe peretele abdominal la urcarea la altitudini de 7-12 km sau mai mult. De o anumită importanță este eliberarea gazelor dizolvate în conținutul intestinal.

Expansiunea gazelor duce la întinderea stomacului și a intestinelor, ridicarea diafragmei, schimbarea poziției inimii, iritarea aparatului receptor al acestor organe și provocând reflexe patologice care perturbă respirația și circulația sângelui. Adesea există dureri ascuțite în abdomen. Fenomene similare apar uneori la scafandri atunci când urcă de la adâncime la suprafață.

Mecanismul de dezvoltare a barotitei și barozinuzitei, manifestat printr-o senzație de congestie și, respectiv, durere în urechea medie sau cavitățile accesorii ale nasului, este similar cu dezvoltarea flatulenței de mare altitudine.

Scăderea presiunii, pe lângă extinderea gazelor conținute în cavitățile corpului, determină și eliberarea de gaze din lichide și țesuturi în care acestea au fost dizolvate sub presiune la nivelul mării sau la adâncime și formarea de bule de gaz în organism. .

Acest proces de ieșire a gazelor dizolvate (în primul rând azotul) provoacă dezvoltarea unei boli de decompresie (vezi).

Orez. 4. Dependența punctului de fierbere al apei de altitudine și presiunea barometrică. Numerele de presiune sunt situate sub numerele de altitudine corespunzătoare.

Odată cu scăderea presiunii atmosferice, punctul de fierbere al lichidelor scade (Fig. 4). La o altitudine mai mare de 19 km, unde presiunea barometrică este egală cu (sau mai mică decât) elasticitatea vaporilor saturați la temperatura corpului (37 °), poate apărea „fierberea” fluidului interstițial și intercelular al corpului, rezultând în venele mari, în cavitatea pleurei, stomacului, pericardului, în țesutul adipos lax, adică în zonele cu presiune hidrostatică și interstițială scăzută, se formează bule de vapori de apă, se dezvoltă emfizemul tisular de mare altitudine. „Fierberea” altitudinii nu afectează structurile celulare, fiind localizată doar în lichidul intercelular și sânge.

Bulele de abur masive pot bloca activitatea inimii și circulația sângelui și pot perturba funcționarea sistemelor și organelor vitale. Aceasta este o complicație gravă a înfometării acute de oxigen care se dezvoltă la altitudini mari. Prevenirea emfizemului tisular de mare altitudine poate fi realizată prin crearea unei contrapresiuni externe asupra corpului cu echipamente de mare altitudine.

Însuși procesul de scădere a presiunii barometrice (decompresie) sub anumiți parametri poate deveni un factor dăunător. În funcție de viteză, decompresia este împărțită în lină (lentă) și explozivă. Acesta din urmă se desfășoară în mai puțin de 1 secundă și este însoțit de o bubuitură puternică (ca într-o lovitură), formarea de ceață (condensarea vaporilor de apă datorită răcirii aerului în expansiune). În mod obișnuit, decompresia explozivă are loc la altitudini atunci când geamul unui cockpit sub presiune sau al unui costum de presiune se sparge.

În decompresia explozivă, plămânii sunt primii care suferă. O creștere rapidă a excesului de presiune intrapulmonar (mai mult de 80 mm Hg) duce la o întindere semnificativă a țesutului pulmonar, care poate provoca ruptura plămânilor (cu extinderea lor de 2,3 ori). Decompresia explozivă poate provoca, de asemenea, leziuni ale tractului gastrointestinal. Cantitatea de suprapresiune care apare în plămâni va depinde în mare măsură de rata de ieșire a aerului din ei în timpul decompresiei și de volumul de aer din plămâni. Este deosebit de periculos dacă căile aeriene superioare în momentul decompresiei se dovedesc a fi închise (în timpul înghițirii, ținerii respirației) sau decompresia coincide cu faza de inspirație profundă, când plămânii sunt umpluți cu o cantitate mare de aer.

Temperatura atmosferică

Temperatura atmosferei scade inițial odată cu creșterea altitudinii (în medie, de la 15° lângă sol la -56,5° la o altitudine de 11-18 km). Gradientul vertical de temperatură în această zonă a atmosferei este de aproximativ 0,6° la fiecare 100 m; se modifică în timpul zilei și anului (Tabelul 4).

Tabelul 4. MODIFICĂRI ÎN GRADIENTUL VERTICAL DE TEMPERATURĂ PE FÂȘIA DE MIJLOC A TERITORIULUI URSS

Orez. 5. Schimbarea temperaturii atmosferei la diferite înălțimi. Limitele sferelor sunt indicate printr-o linie punctată.

La altitudini de 11 - 25 km, temperatura devine constantă și se ridică la -56,5 °; apoi temperatura începe să crească, atingând 30–40° la o altitudine de 40 km, și 70° la o altitudine de 50–60 km (Fig. 5), ceea ce este asociat cu absorbția intensă a radiației solare de către ozon. De la o înălțime de 60-80 km, temperatura aerului scade din nou ușor (până la 60°C), apoi crește progresiv și atinge 270°C la altitudinea de 120 km, 800°C la altitudinea de 220 km, 1500. °C la o altitudine de 300 km, și

la granița cu spațiul cosmic - mai mult de 3000 °. Trebuie remarcat faptul că, datorită rarefării ridicate și a densității scăzute a gazelor la aceste înălțimi, capacitatea lor de căldură și capacitatea de a încălzi corpurile mai reci este foarte mică. În aceste condiții, transferul de căldură de la un corp la altul are loc numai prin radiație. Toate schimbările considerate de temperatură în atmosferă sunt asociate cu absorbția de către masele de aer a energiei termice a Soarelui - directă și reflectată.

În partea inferioară a atmosferei de lângă suprafața Pământului, distribuția temperaturii depinde de afluxul radiației solare și, prin urmare, are un caracter preponderent latitudinal, adică liniile de temperatură egală - izoterme - sunt paralele cu latitudinile. Deoarece atmosfera din straturile inferioare este încălzită de la suprafața pământului, schimbarea orizontală a temperaturii este puternic influențată de distribuția continentelor și oceanelor, ale căror proprietăți termice sunt diferite. De obicei, cărțile de referință indică temperatura măsurată în timpul observațiilor meteorologice din rețea cu un termometru instalat la o înălțime de 2 m deasupra suprafeței solului. Cele mai ridicate temperaturi (până la 58°C) sunt observate în deșerturile Iranului, iar în URSS - în sudul Turkmenistanului (până la 50°), cele mai scăzute (până la -87°) în Antarctica și în URSS - în regiunile Verkhoyansk și Oymyakon (până la -68 ° ). Iarna, gradientul vertical de temperatură în unele cazuri, în loc de 0,6 °, poate depăși 1 ° la 100 m sau chiar poate lua o valoare negativă. În timpul zilei, în sezonul cald, poate fi egal cu multe zeci de grade la 100 m. Există, de asemenea, un gradient de temperatură orizontal, care este de obicei menționat ca o distanță de 100 km de-a lungul normalului la izotermă. Mărimea gradientului de temperatură orizontal este de zecimi de grad la 100 km, iar în zonele frontale poate depăși 10° la 100 m.

Corpul uman este capabil să mențină homeostazia termică (vezi) într-un interval destul de restrâns de fluctuații ale temperaturii exterioare - de la 15 la 45 °. Diferențele semnificative de temperatură a atmosferei în apropierea Pământului și la înălțimi necesită utilizarea unor mijloace tehnice speciale de protecție pentru a asigura echilibrul termic între corpul uman și mediul înconjurător în zborurile la mare altitudine și în spațiu.

Modificările caracteristice ale parametrilor atmosferei (temperatura, presiunea, compoziția chimică, starea electrică) fac posibilă împărțirea condiționată a atmosferei în zone sau straturi. troposfera- cel mai apropiat strat de Pământ, a cărui limită superioară se extinde la ecuator până la 17-18 km, la poli - până la 7-8 km, la latitudini medii - până la 12-16 km. Troposfera se caracterizează printr-o scădere exponențială a presiunii, prezența unui gradient vertical constant de temperatură, mișcări orizontale și verticale ale maselor de aer și modificări semnificative ale umidității aerului. Troposfera conține cea mai mare parte a atmosferei, precum și o parte semnificativă a biosferei; aici apar toate tipurile principale de nori, se formează mase de aer și fronturi, se dezvoltă cicloni și anticicloni. În troposferă, datorită reflectării razelor solare de către stratul de zăpadă al Pământului și răcirii straturilor de aer de suprafață, are loc așa-numita inversiune, adică o creștere a temperaturii în atmosferă de la fund. în sus în loc de scăderea obișnuită.

În sezonul cald în troposferă are loc o amestecare constantă turbulentă (aleatorie, haotică) a maselor de aer și transfer de căldură prin fluxuri de aer (convecție). Convecția distruge ceața și reduce conținutul de praf din atmosfera inferioară.

Al doilea strat al atmosferei este stratosferă.

Pornește din troposferă ca o zonă îngustă (1-3 km) cu o temperatură constantă (tropopauză) și se extinde la înălțimi de aproximativ 80 km. O caracteristică a stratosferei este rarefierea progresivă a aerului, intensitatea excepțional de mare a radiațiilor ultraviolete, absența vaporilor de apă, prezența unei cantități mari de ozon și creșterea treptată a temperaturii. Conținutul ridicat de ozon provoacă o serie de fenomene optice (miraje), provoacă reflexia sunetelor și are un efect semnificativ asupra intensității și compoziției spectrale a radiațiilor electromagnetice. În stratosferă există o amestecare constantă a aerului, astfel încât compoziția sa este asemănătoare cu aerul din troposferă, deși densitatea sa la limitele superioare ale stratosferei este extrem de scăzută. Vânturile predominante în stratosferă sunt cele de vest, iar în zona superioară are loc o tranziție către vânturile de est.

Al treilea strat al atmosferei este ionosferă, care începe din stratosferă și se extinde până la altitudini de 600-800 km.

Caracteristicile distinctive ale ionosferei sunt rarefierea extremă a mediului gazos, o concentrație mare de ioni moleculari și atomici și electroni liberi, precum și temperatura ridicată. Ionosfera afectează propagarea undelor radio, determinând refracția, reflectarea și absorbția acestora.

Principala sursă de ionizare în straturile înalte ale atmosferei este radiația ultravioletă a Soarelui. În acest caz, electronii sunt scoși din atomii de gaz, atomii se transformă în ioni pozitivi, iar electronii eliminați rămân liberi sau sunt capturați de molecule neutre cu formarea de ioni negativi. Ionizarea ionosferei este influențată de meteoriți, radiațiile corpusculare, de raze X și gama ale Soarelui, precum și de procesele seismice ale Pământului (cutremure, erupții vulcanice, explozii puternice), care generează unde acustice în ionosferă, care crește amplitudinea și viteza oscilațiilor particulelor atmosferice și contribuie la ionizarea moleculelor și atomilor de gaz (vezi Aeroionizare).

Conductivitatea electrică în ionosferă, asociată cu o concentrație mare de ioni și electroni, este foarte mare. Conductivitatea electrică crescută a ionosferei joacă un rol important în reflectarea undelor radio și apariția aurorelor.

Ionosfera este zona de zboruri ale sateliților de pământ artificial și ale rachetelor balistice intercontinentale. În prezent, medicina spațială studiază posibilele efecte asupra corpului uman al condițiilor de zbor din această parte a atmosferei.

Al patrulea, stratul exterior al atmosferei - exosfera. De aici, gazele atmosferice sunt împrăștiate în spațiul lumii datorită disipării (depășirea forțelor gravitaționale de către molecule). Apoi are loc o tranziție treptată de la atmosferă la spațiul exterior interplanetar. Exosfera se deosebește de aceasta din urmă prin prezența unui număr mare de electroni liberi care formează a 2-a și a 3-a centură de radiație a Pământului.

Împărțirea atmosferei în 4 straturi este foarte arbitrară. Deci, conform parametrilor electrici, întreaga grosime a atmosferei este împărțită în 2 straturi: neutrosfera, în care predomină particulele neutre, și ionosfera. Temperatura distinge troposfera, stratosfera, mezosfera si termosfera, separate, respectiv, prin tropo-, strato- si mezopauza. Stratul atmosferei situat intre 15 si 70 km si caracterizat printr-un continut ridicat de ozon se numeste ozonosfera.

În scopuri practice, este convenabil să se utilizeze atmosfera standard internațională (MCA), pentru care sunt acceptate următoarele condiții: presiunea la nivelul mării la t ° 15 ° este de 1013 mbar (1,013 X 10 5 nm 2, sau 760 mm Hg). ); temperatura scade cu 6,5° la 1 km la un nivel de 11 km (stratosfera condiționată), apoi rămâne constantă. În URSS, a fost adoptată atmosfera standard GOST 4401 - 64 (Tabelul 3).

Precipitare. Deoarece cea mai mare parte a vaporilor de apă atmosferici este concentrată în troposferă, procesele de tranziții de fază ale apei, care provoacă precipitații, au loc în principal în troposferă. Norii troposferici acoperă de obicei aproximativ 50% din întreaga suprafață a pământului, în timp ce norii din stratosferă (la altitudini de 20-30 km) și din apropierea mezopauzei, numiți nori sidefați și respectiv noctilucenți, sunt observați relativ rar. Ca urmare a condensării vaporilor de apă în troposferă, se formează nori și au loc precipitații.

După natura precipitațiilor, precipitațiile sunt împărțite în 3 tipuri: continue, torențiale, burnițe. Cantitatea de precipitații este determinată de grosimea stratului de apă căzută în milimetri; precipitațiile sunt măsurate cu pluviometre și pluviometre. Intensitatea precipitațiilor este exprimată în milimetri pe minut.

Distribuția precipitațiilor în anumite anotimpuri și zile, precum și asupra teritoriului, este extrem de neuniformă, datorită circulației atmosferei și influenței suprafeței Pământului. Astfel, pe Insulele Hawaii, în medie, cade 12.000 mm pe an, iar în regiunile cele mai uscate din Peru și Sahara, precipitațiile nu depășesc 250 mm, iar uneori nu cad timp de câțiva ani. În dinamica anuală a precipitaţiilor se disting următoarele tipuri: ecuatorială - cu un maxim de precipitaţii după echinocţiul de primăvară şi toamnă; tropical - cu un maxim de precipitații vara; muson - cu un vârf foarte pronunțat vara și iarna uscată; subtropical - cu precipitații maxime iarna și vara uscată; latitudini temperate continentale - cu un maxim de precipitații vara; latitudini marine temperate – cu un maxim de precipitaţii iarna.

Întregul complex atmosferic-fizic de factori climatici și meteorologici care alcătuiesc vremea este utilizat pe scară largă pentru promovarea sănătății, întărire și în scopuri medicinale (vezi Climatoterapia). Împreună cu aceasta, s-a stabilit că fluctuațiile bruște ale acestor factori atmosferici pot afecta negativ procesele fiziologice din organism, provocând dezvoltarea diferitelor stări patologice și exacerbarea bolilor, care sunt numite reacții meteotropice (vezi Climatopatologie). De o importanță deosebită în acest sens sunt perturbările frecvente, pe termen lung, ale atmosferei și fluctuațiile bruște ale factorilor meteorologici.

Reacțiile meteorotrope sunt observate mai des la persoanele care suferă de boli ale sistemului cardiovascular, poliartrită, astm bronșic, ulcer peptic, boli de piele.

Bibliografie: Belinsky V. A. și Pobiyaho V. A. Aerology, L., 1962, bibliogr.; Biosfera și resursele sale, ed. V. A. Kovdy, Moscova, 1971. Danilov A. D. Chimia ionosferei, L., 1967; Kolobkov N. V. Atmosfera și viața ei, M., 1968; Kalitin H.H. Fundamentele fizicii atmosferice aplicate în medicină, L., 1935; Matveev L. T. Fundamentele meteorologiei generale, Fizica atmosferei, L., 1965, bibliogr.; Minkh A. A. Air ionization and its hygienic value, M., 1963, bibliogr.; it, Metode de cercetări igienice, M., 1971, bibliogr.; Tverskoy P. N. Curs de meteorologie, L., 1962; Umansky S.P. Omul în spațiu, M., 1970; Hvostikov I. A. Straturi înalte ale atmosferei, L., 1964; X r g şi a N A. X. Fizica atmosferei, L., 1969, bibliogr.; Khromov S.P. Meteorologie și climatologie pentru facultățile geografice, L., 1968.

Efectele tensiunii arteriale ridicate și scăzute asupra organismului- Armstrong G. Medicina aviatica, trad. din engleză, M., 1954, bibliogr.; Saltsman G.L. Bazele fiziologice ale șederii unei persoane în condiții de presiune ridicată a gazelor din mediu, L., 1961, bibliogr.; Ivanov D. I. și Khromushkin A. I. Sisteme de susținere a vieții umane în timpul zborurilor la mare altitudine și în spațiu, M., 1968, bibliogr.; Isakov P. K., etc. Teoria și practica medicinei aviatice, M., 1971, bibliogr.; Kovalenko E. A. și Chernyakov I. N. Oxigenul țesăturilor la factorii extremi de zbor, M., 1972, bibliogr.; Miles S. Medicina subacvatica, trad. din engleză, M., 1971, bibliografie; Busby D. E. Medicină clinică spațială, Dordrecht, 1968.

I. H. Cernyakov, M. T. Dmitriev, S. I. Nepomnyashchy.

Limita sa superioară se află la o altitudine de 8-10 km în latitudini polare, 10-12 km în latitudinile temperate și 16-18 km în latitudini tropicale; mai scăzut iarna decât vara. Stratul inferior, principal al atmosferei. Conține mai mult de 80% din masa totală a aerului atmosferic și aproximativ 90% din toți vaporii de apă prezenți în atmosferă. Turbulența și convecția sunt puternic dezvoltate în troposferă, apar norii, se dezvoltă cicloni și anticicloni. Temperatura scade cu altitudinea cu un gradient vertical mediu de 0,65°/100 m

Pentru „condiții normale” la suprafața Pământului se iau: densitatea 1,2 kg/m3, presiunea barometrică 101,35 kPa, temperatura plus 20 °C și umiditatea relativă 50%. Acești indicatori condiționali au o valoare pur inginerească.

Stratosferă

Stratul atmosferei situat la o altitudine de 11 până la 50 km. O ușoară modificare a temperaturii în stratul de 11-25 km (stratul inferior al stratosferei) și creșterea acesteia în stratul de 25-40 km de la -56,5 la 0,8 ° (stratosfera superioară sau regiunea de inversare) sunt tipice. Atinsă o valoare de aproximativ 273 K (aproape 0 ° C) la o altitudine de aproximativ 40 km, temperatura rămâne constantă până la o altitudine de aproximativ 55 km. Această regiune de temperatură constantă se numește stratopauză și este granița dintre stratosferă și mezosferă.

Stratopauza

Stratul limită al atmosferei dintre stratosferă și mezosferă. Există un maxim în distribuția verticală a temperaturii (aproximativ 0 °C).

Mezosfera

Mezopauza

Stratul de tranziție între mezosferă și termosferă. Există un minim în distribuția verticală a temperaturii (aproximativ -90°C).

Linia Karman

Altitudinea deasupra nivelului mării, care este acceptată în mod convențional ca graniță între atmosfera Pământului și spațiu.

Termosferă

Limita superioară este de aproximativ 800 km. Temperatura se ridică la altitudini de 200-300 km, unde atinge valori de ordinul a 1500 K, după care rămâne aproape constantă până la altitudini mari. Sub influența radiației solare ultraviolete și cu raze X și a radiației cosmice, aerul este ionizat („lumini polare”) - principalele regiuni ale ionosferei se află în interiorul termosferei. La altitudini de peste 300 km predomină oxigenul atomic.

Exosfera (sfera de împrăștiere)

Până la o înălțime de 100 km, atmosfera este un amestec omogen, bine amestecat de gaze. În straturile superioare, distribuția gazelor în înălțime depinde de masele lor moleculare, concentrația gazelor mai grele scade mai repede cu distanța de la suprafața Pământului. Datorită scăderii densității gazelor, temperatura scade de la 0 °C în stratosferă la -110 °C în mezosferă. Cu toate acestea, energia cinetică a particulelor individuale la altitudini de 200–250 km corespunde unei temperaturi de ~1500°C. Peste 200 km, se observă fluctuații semnificative ale temperaturii și densității gazelor în timp și spațiu.

La o altitudine de aproximativ 2000-3000 km, exosfera trece treptat în așa-numita în apropierea vidului spațial, care este umplut cu particule foarte rarefiate de gaz interplanetar, în principal atomi de hidrogen. Dar acest gaz este doar o parte din materia interplanetară. Cealaltă parte este compusă din particule asemănătoare prafului de origine cometă și meteorică. Pe lângă particulele extrem de rarefiate asemănătoare prafului, în acest spațiu pătrunde radiația electromagnetică și corpusculară de origine solară și galactică.

Troposfera reprezintă aproximativ 80% din masa atmosferei, stratosfera reprezintă aproximativ 20%; masa mezosferei nu este mai mare de 0,3%, termosfera este mai mică de 0,05% din masa totală a atmosferei. Pe baza proprietăților electrice din atmosferă, se disting neutrosfera și ionosfera. În prezent se crede că atmosfera se extinde până la o altitudine de 2000-3000 km.

În funcție de compoziția gazului din atmosferă, ele emit homosferăȘi heterosferă. heterosferă- aceasta este o zonă în care gravitația afectează separarea gazelor, deoarece amestecarea lor la o astfel de înălțime este neglijabilă. De aici urmează compoziția variabilă a heterosferei. Sub ea se află o parte bine amestecată, omogenă a atmosferei, numită homosferă. Limita dintre aceste straturi se numește turbopauză, se află la o altitudine de aproximativ 120 km.

Proprietăți fizice

Grosimea atmosferei este de aproximativ 2000 - 3000 km de suprafața Pământului. Masa totală de aer - (5,1-5,3)?10 18 kg. Masa molară a aerului curat uscat este 28,966. Presiune la 0 °C la nivelul mării 101,325 kPa; temperatura critică -140,7 °C; presiune critica 3,7 MPa; C p 1,0048?10? J/(kg K) (la 0 °C), C v 0,7159 10? J/(kg K) (la 0 °C). Solubilitatea aerului în apă la 0°С - 0,036%, la 25°С - 0,22%.

Proprietăți fiziologice și alte proprietăți ale atmosferei

Deja la o altitudine de 5 km deasupra nivelului mării, o persoană neantrenată dezvoltă foamete de oxigen și, fără adaptare, performanța unei persoane este redusă semnificativ. Aici se termină zona fiziologică a atmosferei. Respirația omului devine imposibilă la o altitudine de 15 km, deși până la aproximativ 115 km atmosfera conține oxigen.

Atmosfera ne oferă oxigenul de care avem nevoie pentru a respira. Cu toate acestea, din cauza scăderii presiunii totale a atmosferei pe măsură ce vă ridicați la o înălțime, presiunea parțială a oxigenului scade în mod corespunzător.

Plămânii umani conțin în mod constant aproximativ 3 litri de aer alveolar. Presiunea parțială a oxigenului din aerul alveolar la presiunea atmosferică normală este de 110 mm Hg. Art., presiunea dioxidului de carbon - 40 mm Hg. Art., si vapori de apa - 47 mm Hg. Artă. Odată cu creșterea altitudinii, presiunea oxigenului scade, iar presiunea totală a vaporilor de apă și a dioxidului de carbon din plămâni rămâne aproape constantă - aproximativ 87 mm Hg. Artă. Fluxul de oxigen în plămâni se va opri complet atunci când presiunea aerului din jur devine egală cu această valoare.

La o altitudine de aproximativ 19-20 km, presiunea atmosferică scade la 47 mm Hg. Artă. Prin urmare, la această înălțime, apa și lichidul interstițial încep să fiarbă în corpul uman. În afara cabinei presurizate la aceste altitudini, moartea are loc aproape instantaneu. Astfel, din punct de vedere al fiziologiei umane, „spațiul” începe deja la o altitudine de 15-19 km.

Straturile dense de aer - troposfera și stratosfera - ne protejează de efectele dăunătoare ale radiațiilor. Cu suficientă rarefiere a aerului, la altitudini mai mari de 36 km, radiațiile ionizante, razele cosmice primare, au un efect intens asupra organismului; la altitudini de peste 40 km, funcţionează partea ultravioletă a spectrului solar, care este periculoasă pentru oameni.

Pe măsură ce ne ridicăm la o înălțime tot mai mare deasupra suprafeței Pământului, slăbim treptat și apoi dispar complet, astfel de fenomene care ne sunt familiare, observate în straturile inferioare ale atmosferei, cum ar fi propagarea sunetului, apariția ridicării aerodinamice. și rezistență, transfer de căldură prin convecție etc.

În straturile rarefiate de aer, propagarea sunetului este imposibilă. Până la altitudini de 60-90 km, este încă posibilă utilizarea rezistenței aerului și a portanței pentru zborul aerodinamic controlat. Dar pornind de la altitudini de 100-130 km, conceptele de număr M și bariera sonoră familiară fiecărui pilot își pierd sensul, trece Linia Karman condiționată, dincolo de care începe sfera zborului pur balistic, care poate fi doar controlată. folosind forțe reactive.

La altitudini de peste 100 km, atmosfera este, de asemenea, lipsită de o altă proprietate remarcabilă - capacitatea de a absorbi, conduce și transfera energia termică prin convecție (adică prin amestecarea aerului). Aceasta înseamnă că diverse elemente de echipamente, echipamente ale stației spațiale orbitale nu vor putea fi răcite din exterior în modul în care se face de obicei pe un avion - cu ajutorul jeturilor de aer și radiatoarelor de aer. La o astfel de înălțime, ca și în spațiu în general, singura modalitate de a transfera căldura este radiația termică.

Compoziția atmosferei

Atmosfera Pământului este formată în principal din gaze și diverse impurități (praf, picături de apă, cristale de gheață, săruri marine, produse de ardere).

Concentrația gazelor care formează atmosfera este aproape constantă, cu excepția apei (H 2 O) și a dioxidului de carbon (CO 2).

Compoziția aerului uscat
Gaz Conţinut
în volum, %
Conţinut
după greutate, %
Azot 78,084 75,50
Oxigen 20,946 23,10
Argon 0,932 1,286
Apă 0,5-4 -
Dioxid de carbon 0,032 0,046
Neon 1,818×10 −3 1,3×10 −3
Heliu 4,6×10 −4 7,2×10 −5
Metan 1,7×10 −4 -
Krypton 1,14×10 −4 2,9×10 −4
Hidrogen 5×10 −5 7,6×10 −5
Xenon 8,7×10 −6 -
Oxid de azot 5×10 −5 7,7×10 −5

Pe lângă gazele indicate în tabel, atmosfera conține SO 2, NH 3, CO, ozon, hidrocarburi, HCl, vapori, I 2, precum și multe alte gaze în cantități mici. În troposferă există în mod constant o cantitate mare de particule solide și lichide în suspensie (aerosol).

Istoria formării atmosferei

Conform celei mai comune teorii, atmosfera Pământului a fost în patru compoziții diferite de-a lungul timpului. Inițial, a constat din gaze ușoare (hidrogen și heliu) captate din spațiul interplanetar. Acest așa-zis atmosfera primara(acum aproximativ patru miliarde de ani). În etapa următoare, activitatea vulcanică activă a dus la saturarea atmosferei cu alte gaze decât hidrogenul (dioxid de carbon, amoniac, vapori de apă). Acesta este cum atmosfera secundara(aproximativ trei miliarde de ani înainte de zilele noastre). Această atmosferă era reconfortantă. În plus, procesul de formare a atmosferei a fost determinat de următorii factori:

  • scurgerea gazelor ușoare (hidrogen și heliu) în spațiul interplanetar;
  • reacții chimice care apar în atmosferă sub influența radiațiilor ultraviolete, a descărcărilor de fulgere și a altor factori.

Treptat, acești factori au dus la formare atmosfera tertiara, caracterizată printr-un conținut mult mai scăzut de hidrogen și un conținut mult mai mare de azot și dioxid de carbon (format ca urmare a reacțiilor chimice din amoniac și hidrocarburi).

Azot

Formarea unei cantități mari de N 2 se datorează oxidării atmosferei amoniac-hidrogen de către O 2 molecular, care a început să iasă de la suprafața planetei ca urmare a fotosintezei, începând cu 3 miliarde de ani în urmă. N2 este de asemenea eliberat în atmosferă ca urmare a denitrificării nitraților și a altor compuși care conțin azot. Azotul este oxidat de ozon la NO în atmosfera superioară.

Azotul N 2 intră în reacții numai în condiții specifice (de exemplu, în timpul unei descărcări de fulgere). Oxidarea azotului molecular de către ozon în timpul descărcărilor electrice este utilizată în producția industrială de îngrășăminte cu azot. Poate fi oxidat cu un consum redus de energie și transformat într-o formă biologic activă de către cianobacteriile (alge albastre-verzi) și bacteriile nodulare care formează simbioză rizobială cu leguminoasele, așa-numitele. gunoi de grajd verde.

Oxigen

Compoziția atmosferei a început să se schimbe radical odată cu apariția organismelor vii pe Pământ, ca urmare a fotosintezei, însoțită de eliberarea de oxigen și absorbția de dioxid de carbon. Inițial, oxigenul a fost cheltuit pentru oxidarea compușilor reduși - amoniac, hidrocarburi, forma feroasă a fierului conținută în oceane etc. La sfârșitul acestei etape, conținutul de oxigen din atmosferă a început să crească. Treptat, s-a format o atmosferă modernă cu proprietăți oxidante. Deoarece acest lucru a provocat schimbări grave și abrupte în multe procese care au loc în atmosferă, litosferă și biosferă, acest eveniment a fost numit Catastrofa oxigenului.

Dioxid de carbon

Conținutul de CO 2 din atmosferă depinde de activitatea vulcanică și de procesele chimice din învelișul pământului, dar mai ales - de intensitatea biosintezei și descompunerii materiei organice din biosfera Pământului. Aproape întreaga biomasă actuală a planetei (aproximativ 2,4 × 10 12 tone) se formează din cauza dioxidului de carbon, azotului și vaporilor de apă conținute în aerul atmosferic. Îngropată în ocean, mlaștini și păduri, materia organică se transformă în cărbune, petrol și gaze naturale. (vezi ciclul geochimic al carbonului)

gaze nobile

Poluarea aerului

Recent, omul a început să influențeze evoluția atmosferei. Rezultatul activităților sale a fost o creștere constantă semnificativă a conținutului de dioxid de carbon din atmosferă datorită arderii combustibililor hidrocarburi acumulați în epocile geologice anterioare. Cantități uriașe de CO 2 sunt consumate în timpul fotosintezei și absorbite de oceanele lumii. Acest gaz pătrunde în atmosferă datorită descompunerii rocilor carbonatice și a substanțelor organice de origine vegetală și animală, precum și din cauza vulcanismului și a activităților de producție umană. În ultimii 100 de ani, conținutul de CO 2 din atmosferă a crescut cu 10%, cea mai mare parte (360 de miliarde de tone) provenind din arderea combustibilului. Dacă rata de creștere a arderii combustibilului continuă, atunci în următorii 50 - 60 de ani cantitatea de CO 2 din atmosferă se va dubla și poate duce la schimbări climatice globale.

Arderea combustibilului este principala sursă de gaze poluante (СО,, SO 2). Dioxidul de sulf este oxidat de oxigenul atmosferic la SO 3 în atmosfera superioară, care la rândul său interacționează cu vaporii de apă și amoniacul, iar acidul sulfuric (H 2 SO 4 ) și sulfatul de amoniu ((NH 4 ) 2 SO 4 ) care rezultă revin la suprafața Pământului sub forma unui așa-numit. ploaie acidă. Utilizarea motoarelor cu ardere internă conduce la o poluare semnificativă a aerului cu oxizi de azot, hidrocarburi și compuși de plumb (tetraetil plumb Pb (CH 3 CH 2) 4)).

Poluarea atmosferei cu aerosoli este cauzată atât de cauze naturale (erupții vulcanice, furtuni de praf, antrenarea picăturilor de apă de mare și a polenului vegetal etc.), cât și de activitatea economică umană (exploatarea minereurilor și a materialelor de construcție, arderea combustibililor, producția de ciment etc.). .). Eliminarea intensă pe scară largă a particulelor solide în atmosferă este una dintre posibilele cauze ale schimbărilor climatice de pe planetă.

Literatură

  1. V. V. Parin, F. P. Kosmolinsky, B. A. Dushkov „Biologie și medicină spațială” (ediția a II-a, revizuită și mărită), M.: „Prosveshchenie”, 1975, 223 pagini.
  2. N. V. Gusakova „Chimia mediului”, Rostov-pe-Don: Phoenix, 2004, 192 s ISBN 5-222-05386-5
  3. Sokolov V. A. Geochimia gazelor naturale, M., 1971;
  4. McEwen M., Phillips L.. Atmospheric Chemistry, M., 1978;
  5. Wark K., Warner S., Poluarea aerului. Surse și control, trad. din engleză, M.. 1980;
  6. Monitorizarea poluării de fond a mediilor naturale. V. 1, L., 1982.

Vezi si

Legături

Atmosfera Pământului

troposfera

Limita sa superioară se află la o altitudine de 8-10 km în latitudini polare, 10-12 km în latitudinile temperate și 16-18 km în latitudini tropicale; mai scăzut iarna decât vara. Stratul principal inferior al atmosferei conține mai mult de 80% din masa totală a aerului atmosferic și aproximativ 90% din toți vaporii de apă prezenți în atmosferă. În troposferă, turbulența și convecția sunt foarte dezvoltate, apar nori, se dezvoltă cicloni și anticicloni. Temperatura scade cu altitudinea cu un gradient vertical mediu de 0,65°/100 m

tropopauza

Stratul de tranziție de la troposferă la stratosferă, stratul atmosferei în care încetează scăderea temperaturii odată cu înălțimea.

Stratosferă

Stratul atmosferei situat la o altitudine de 11 până la 50 km. O ușoară modificare a temperaturii în stratul de 11-25 km (stratul inferior al stratosferei) și creșterea acesteia în stratul de 25-40 km de la -56,5 la 0,8 °C (stratul superior al stratosferei sau regiunea de inversare) sunt tipice. Atinsă o valoare de aproximativ 273 K (aproape 0 °C) la o altitudine de aproximativ 40 km, temperatura rămâne constantă până la o altitudine de aproximativ 55 km. Această regiune de temperatură constantă se numește stratopauză și este granița dintre stratosferă și mezosferă.

Stratopauza

Stratul limită al atmosferei dintre stratosferă și mezosferă. Există un maxim în distribuția verticală a temperaturii (aproximativ 0 °C).

Mezosfera

Mezosfera începe la o altitudine de 50 km și se extinde până la 80-90 km. Temperatura scade cu înălțimea cu un gradient vertical mediu de (0,25-0,3)°/100 m. Procesul energetic principal este transferul de căldură radiantă. Procesele fotochimice complexe care implică radicali liberi, molecule excitate vibrațional etc., provoacă luminiscența atmosferică.

Mezopauza

Stratul de tranziție între mezosferă și termosferă. Există un minim în distribuția verticală a temperaturii (aproximativ -90 °C).

Linia Karman

Altitudinea deasupra nivelului mării, care este acceptată în mod convențional ca graniță între atmosfera Pământului și spațiu. Linia Karmana este situată la o altitudine de 100 km deasupra nivelului mării.

Limita atmosferei Pământului

Termosferă

Limita superioară este de aproximativ 800 km. Temperatura se ridică la altitudini de 200-300 km, unde atinge valori de ordinul a 1500 K, după care rămâne aproape constantă până la altitudini mari. Sub influența radiației solare ultraviolete și razelor X și a radiației cosmice, aerul este ionizat („lumini polare”) - principalele regiuni ale ionosferei se află în interiorul termosferei. La altitudini de peste 300 km predomină oxigenul atomic. Limita superioară a termosferei este determinată în mare măsură de activitatea curentă a Soarelui. În perioadele de activitate scăzută, există o scădere vizibilă a dimensiunii acestui strat.

Termopauza

Regiunea atmosferei deasupra termosferei. În această regiune, absorbția radiației solare este nesemnificativă și temperatura nu se modifică efectiv cu înălțimea.

Exosfera (sfera de împrăștiere)

Straturi atmosferice până la o înălțime de 120 km

Exosferă - zonă de împrăștiere, partea exterioară a termosferei, situată peste 700 km. Gazul din exosferă este foarte rarefiat și, prin urmare, particulele sale se scurg în spațiul interplanetar (disipare).

Până la o înălțime de 100 km, atmosfera este un amestec omogen, bine amestecat de gaze. În straturile superioare, distribuția gazelor în înălțime depinde de masele lor moleculare, concentrația gazelor mai grele scade mai repede cu distanța de la suprafața Pământului. Datorită scăderii densității gazelor, temperatura scade de la 0 °C în stratosferă la −110 °C în mezosferă. Cu toate acestea, energia cinetică a particulelor individuale la altitudini de 200–250 km corespunde unei temperaturi de ~150 °C. Peste 200 km, se observă fluctuații semnificative ale temperaturii și densității gazelor în timp și spațiu.

La o altitudine de aproximativ 2000-3500 km, exosfera trece treptat în așa-numitul vid din spațiul apropiat, care este umplut cu particule foarte rarefiate de gaz interplanetar, în principal atomi de hidrogen. Dar acest gaz este doar o parte din materia interplanetară. Cealaltă parte este compusă din particule asemănătoare prafului de origine cometă și meteorică. Pe lângă particulele extrem de rarefiate asemănătoare prafului, în acest spațiu pătrunde radiația electromagnetică și corpusculară de origine solară și galactică.

Troposfera reprezintă aproximativ 80% din masa atmosferei, stratosfera reprezintă aproximativ 20%; masa mezosferei nu este mai mare de 0,3%, termosfera este mai mică de 0,05% din masa totală a atmosferei. Pe baza proprietăților electrice din atmosferă, se disting neutrosfera și ionosfera. În prezent se crede că atmosfera se extinde până la o altitudine de 2000-3000 km.

În funcție de compoziția gazului din atmosferă, se disting homosferă și heterosferă. Heterosfera este o zonă în care gravitația are un efect asupra separării gazelor, deoarece amestecarea lor la o astfel de înălțime este neglijabilă. De aici urmează compoziția variabilă a heterosferei. Sub ea se află o parte bine amestecată, omogenă a atmosferei, numită homosferă. Limita dintre aceste straturi se numește turbopauză și se află la o altitudine de aproximativ 120 km.

Toți cei care au zburat într-un avion sunt obișnuiți cu acest tip de mesaj: „zborul nostru este la o altitudine de 10.000 m, temperatura peste bord este de 50 ° C”. Nu pare nimic deosebit. Cu cât este mai departe de suprafața Pământului încălzită de Soare, cu atât mai rece. Mulți oameni cred că scăderea temperaturii odată cu înălțimea continuă și treptat temperatura scade, apropiindu-se de temperatura spațiului. Apropo, oamenii de știință au crezut așa până la sfârșitul secolului al XIX-lea.

Să aruncăm o privire mai atentă asupra distribuției temperaturii aerului pe Pământ. Atmosfera este împărțită în mai multe straturi, care reflectă în primul rând natura schimbărilor de temperatură.

Stratul inferior al atmosferei se numește troposfera, care înseamnă „sfera de rotație". Toate schimbările de vreme și climă sunt rezultatul proceselor fizice care au loc în acest strat. Limita superioară a acestui strat este situată acolo unde scăderea temperaturii cu înălțimea este înlocuită de creșterea acesteia - aproximativ la un altitudine de 15-16 km deasupra ecuatorului și 7-8 km deasupra polilor.Ca și Pământul însuși, atmosfera sub influența rotației planetei noastre este, de asemenea, oarecum aplatizată peste poli și se umflă peste ecuator.Totuși, acest lucru efectul este mult mai puternic în atmosferă decât în ​​învelișul solid al Pământului.În direcția de la suprafața Pământului până la limita superioară a troposferei, temperatura aerului scade.Deasupra ecuatorului, temperatura minimă a aerului este de aproximativ -62 ° C , iar deasupra polilor aproximativ -45 ° C. În latitudinile temperate, mai mult de 75% din masa atmosferei se află în troposferă.La tropice, aproximativ 90% se află în masele troposferei atmosferei.

În 1899, s-a găsit un minim în profilul vertical de temperatură la o anumită altitudine, iar apoi temperatura a crescut ușor. Începutul acestei creșteri înseamnă trecerea la următorul strat al atmosferei - la stratosferă, care înseamnă „sfera stratului". Termenul stratosferă înseamnă și reflectă ideea anterioară a unicității stratului situat deasupra troposferei. Stratosfera se extinde la o înălțime de aproximativ 50 km deasupra suprafeței pământului. Caracteristica sa este , în special, o creștere bruscă a temperaturii aerului Această creștere a temperaturii este explicată reacția de formare a ozonului - una dintre principalele reacții chimice care au loc în atmosferă.

Cea mai mare parte a ozonului este concentrată la altitudini de aproximativ 25 km, dar în general stratul de ozon este o înveliș puternic întins pe înălțime, acoperind aproape toată stratosfera. Interacțiunea oxigenului cu razele ultraviolete este unul dintre procesele favorabile din atmosfera terestră care contribuie la menținerea vieții pe pământ. Absorbția acestei energii de către ozon previne curgerea excesivă a acesteia la suprafața pământului, unde se creează exact un astfel de nivel de energie care este potrivit pentru existența formelor de viață terestre. Ozonosfera absoarbe o parte din energia radiantă care trece prin atmosferă. Ca urmare, în ozonosferă se stabilește un gradient vertical de temperatură a aerului de aproximativ 0,62 ° C la 100 m, adică temperatura crește odată cu înălțimea până la limita superioară a stratosferei - stratopauza (50 km), ajungând, conform unele date, 0 ° C.

La altitudini de la 50 la 80 km există un strat al atmosferei numit mezosferă. Cuvântul „mezosferă” înseamnă „sferă intermediară”, aici temperatura aerului continuă să scadă odată cu înălțimea. Deasupra mezosferei, într-un strat numit termosferă, temperatura crește din nou cu altitudinea până la aproximativ 1000°C, iar apoi scade foarte repede la -96°C. Cu toate acestea, nu scade la infinit, apoi temperatura crește din nou.

Termosferă este primul strat ionosferă. Spre deosebire de straturile menționate anterior, ionosfera nu se distinge prin temperatură. Ionosfera este o regiune de natură electrică care face posibile multe tipuri de comunicații radio. Ionosfera este împărțită în mai multe straturi, desemnându-le cu literele D, E, F1 și F2. Aceste straturi au și denumiri speciale. Împărțirea în straturi este cauzată de mai multe motive, dintre care cel mai important este influența inegală a straturilor asupra trecerii undelor radio. Stratul cel mai de jos, D, absoarbe în principal undele radio și astfel împiedică propagarea lor ulterioară. Cel mai bine studiat stratul E este situat la o altitudine de aproximativ 100 km deasupra suprafeței pământului. Este numit și stratul Kennelly-Heaviside după numele oamenilor de știință americani și englezi care l-au descoperit simultan și independent. Stratul E, ca o oglindă uriașă, reflectă undele radio. Datorită acestui strat, undele radio lungi parcurg distanțe mai mari decât ar fi de așteptat dacă s-ar propaga doar în linie dreaptă, fără a fi reflectate de stratul E. Stratul F are și ele proprietăți similare. Se mai numește și stratul Appleton. Împreună cu stratul Kennelly-Heaviside, reflectă undele radio către stațiile radio terestre.O astfel de reflexie poate avea loc în diferite unghiuri. Stratul Appleton este situat la o altitudine de aproximativ 240 km.

Regiunea cea mai exterioară a atmosferei, al doilea strat al ionosferei, este adesea numită exosfera. Acest termen indică existența periferiei spațiului în apropierea Pământului. Este dificil de determinat exact unde se termină atmosfera și unde începe spațiul, deoarece densitatea gazelor atmosferice scade treptat odată cu înălțimea, iar atmosfera însăși se transformă treptat într-un vid aproape, în care se întâlnesc doar moleculele individuale. Deja la o altitudine de aproximativ 320 km, densitatea atmosferei este atât de scăzută încât moleculele pot călători mai mult de 1 km fără să se ciocnească între ele. Partea cea mai exterioară a atmosferei servește drept graniță superioară, care este situată la altitudini de la 480 la 960 km.

Mai multe informații despre procesele din atmosferă pot fi găsite pe site-ul „Earth climate”